Semiparametric Estimation of Selectivity Models.

Lade...
Vorschaubild
Dateien
151_1.pdf
151_1.pdfGröße: 999.52 KBDownloads: 431
Datum
1998
Autor:innen
Frölich, Markus
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published
Erschienen in
Zusammenfassung

This paper provides a comprehensive summary of the most promising estimation methods for the (dichotomous) selectivity models. Selectivity models, often referred to as sample selection models, are frequently used in structural analysis and evaluation studies, wherever individuals select among different alternatives. Selectivity models strive to estimate structural outcome equations under explicit consideration of the fact that individuals are heterogeneous and that the selection into or out of different alternatives (e.g. treatment/non-treatment) is not random and based on observed and unobserved characteristics. Hence individuals that are selected into one group are likely to be inherently different from individuals that selected into any other group. Neglecting this non-random selection leads to selection bias, either on the basis of observed characteristics or on unobservables, which is the focus of this work. The core idea of all approaches modelling this selection problem is to forecast counterfactual outcomes, that are the hypothetical outcomes a certain individual would have acquired if it selected into an other alternative. At first structural models contaminated by selectivity and the nature of the selection problem are defined rigorously. Different identifying assumptions such as exclusion restrictions, an index assumption, or identification at infinity are illuminated. An extensive discussion of parametric and semiparametric procedures for the 2-categories selectivity model exposes how the different estimators cope with the selection problem. In contrast to the parametric ones, like the Heckman two-step, the semiparametric estimators do not impose tight restrictions on the error terms. The estimators of Gallant/Nychka, Klein/Spady, Powell, Newey, Ahn/Powell, Robinson, Chen and Andrews/Schafgans are presented. Finally, the properties of these estimators, an illustrating example estimating the effect of unionism on wages, and recommen

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
330 Wirtschaft
Schlagwörter
Gallant, Nychka
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690FRÖLICH, Markus, 1998. Semiparametric Estimation of Selectivity Models. [Master thesis]
BibTex
@mastersthesis{Frolich1998Semip-12059,
  year={1998},
  title={Semiparametric Estimation of Selectivity Models.},
  author={Frölich, Markus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12059">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12059/1/151_1.pdf"/>
    <dcterms:title>Semiparametric Estimation of Selectivity Models.</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:42:24Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Frölich, Markus</dc:creator>
    <dc:format>application/pdf</dc:format>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:42:24Z</dc:date>
    <dc:contributor>Frölich, Markus</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12059/1/151_1.pdf"/>
    <dc:language>deu</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12059"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="deu">This paper provides a comprehensive summary of the most promising estimation methods for the (dichotomous) selectivity models. Selectivity models, often referred to as sample selection models, are frequently used in structural analysis and evaluation studies, wherever individuals select among different alternatives. Selectivity models strive to estimate structural outcome equations under explicit consideration of the fact that individuals are heterogeneous and that the selection into or out of different alternatives (e.g. treatment/non-treatment) is not random and based on observed and unobserved characteristics. Hence individuals that are selected into one group are likely to be inherently different from individuals that selected into any other group. Neglecting this non-random selection leads to selection bias, either on the basis of observed characteristics or on unobservables, which is the focus of this work. The core idea of all approaches modelling this selection problem is to forecast counterfactual outcomes, that are the hypothetical outcomes a certain individual would have acquired if it selected into an other alternative. At first structural models contaminated by selectivity and the nature of the selection problem are defined rigorously. Different identifying assumptions such as exclusion restrictions, an index assumption, or identification at infinity are illuminated. An extensive discussion of parametric and semiparametric procedures for the 2-categories selectivity model exposes how the different estimators cope with the selection problem. In contrast to the parametric ones, like the Heckman two-step, the semiparametric estimators do not impose tight restrictions on the error terms. The estimators of Gallant/Nychka, Klein/Spady, Powell, Newey, Ahn/Powell, Robinson, Chen and Andrews/Schafgans are presented. Finally, the properties of these estimators, an illustrating example estimating the effect of unionism on wages, and recommen</dcterms:abstract>
    <dcterms:issued>1998</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen