Publikation:

Detecting random bifurcations via rigorous enclosures of large deviations rate functions

Lade...
Vorschaubild

Dateien

Blessing_2-cbudm4x9qcls2.pdf
Blessing_2-cbudm4x9qcls2.pdfGröße: 2.12 MBDownloads: 1

Datum

2025

Autor:innen

Blumenthal, Alex
Breden, Maxime
Engel, Maximilian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physica D: Nonlinear Phenomena. Elsevier. 2025, 476, 134617. ISSN 0167-2789. eISSN 1872-8022. Verfügbar unter: doi: 10.1016/j.physd.2025.134617

Zusammenfassung

The main goal of this work is to provide a description of transitions from uniform to non-uniform snychronization in diffusions based on large deviation estimates for finite time Lyapunov exponents. These can be characterized in terms of moment Lyapunov exponents which are principal eigenvalues of the generator of the tilted (Feynman–Kac) semigroup. Using a computer assisted proof, we demonstrate how to determine these eigenvalues and investigate the rate function which is the Legendre–Fenchel transform of the moment Lyapunov function. We apply our results to two case studies: the pitchfork bifurcation and a two-dimensional toy model, also considering the transition to a positive asymptotic Lyapunov exponent.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Random bifurcations, Finite time Lyapunov exponents, Moment Lyapunov exponents, Large deviations

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BLESSING-NEAMTU, Alexandra, Alex BLUMENTHAL, Maxime BREDEN, Maximilian ENGEL, 2025. Detecting random bifurcations via rigorous enclosures of large deviations rate functions. In: Physica D: Nonlinear Phenomena. Elsevier. 2025, 476, 134617. ISSN 0167-2789. eISSN 1872-8022. Verfügbar unter: doi: 10.1016/j.physd.2025.134617
BibTex
@article{BlessingNeamtu2025-06Detec-73768,
  title={Detecting random bifurcations via rigorous enclosures of large deviations rate functions},
  year={2025},
  doi={10.1016/j.physd.2025.134617},
  volume={476},
  issn={0167-2789},
  journal={Physica D: Nonlinear Phenomena},
  author={Blessing-Neamtu, Alexandra and Blumenthal, Alex and Breden, Maxime and Engel, Maximilian},
  note={Article Number: 134617}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73768">
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Engel, Maximilian</dc:contributor>
    <dc:contributor>Blessing-Neamtu, Alexandra</dc:contributor>
    <dc:creator>Breden, Maxime</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73768/1/Blessing_2-cbudm4x9qcls2.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73768/1/Blessing_2-cbudm4x9qcls2.pdf"/>
    <dc:creator>Blessing-Neamtu, Alexandra</dc:creator>
    <dc:creator>Blumenthal, Alex</dc:creator>
    <dc:contributor>Blumenthal, Alex</dc:contributor>
    <dc:contributor>Breden, Maxime</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2025-06</dcterms:issued>
    <dc:creator>Engel, Maximilian</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:title>Detecting random bifurcations via rigorous enclosures of large deviations rate functions</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-01T07:45:45Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-01T07:45:45Z</dcterms:available>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73768"/>
    <dcterms:abstract>The main goal of this work is to provide a description of transitions from uniform to non-uniform snychronization in diffusions based on large deviation estimates for finite time Lyapunov exponents. These can be characterized in terms of moment Lyapunov exponents which are principal eigenvalues of the generator of the tilted (Feynman–Kac) semigroup. Using a computer assisted proof, we demonstrate how to determine these eigenvalues and investigate the rate function which is the Legendre–Fenchel transform of the moment Lyapunov function. We apply our results to two case studies: the pitchfork bifurcation and a two-dimensional toy model, also considering the transition to a positive asymptotic Lyapunov exponent.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen