Publikation: Detecting random bifurcations via rigorous enclosures of large deviations rate functions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The main goal of this work is to provide a description of transitions from uniform to non-uniform snychronization in diffusions based on large deviation estimates for finite time Lyapunov exponents. These can be characterized in terms of moment Lyapunov exponents which are principal eigenvalues of the generator of the tilted (Feynman–Kac) semigroup. Using a computer assisted proof, we demonstrate how to determine these eigenvalues and investigate the rate function which is the Legendre–Fenchel transform of the moment Lyapunov function. We apply our results to two case studies: the pitchfork bifurcation and a two-dimensional toy model, also considering the transition to a positive asymptotic Lyapunov exponent.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BLESSING-NEAMTU, Alexandra, Alex BLUMENTHAL, Maxime BREDEN, Maximilian ENGEL, 2025. Detecting random bifurcations via rigorous enclosures of large deviations rate functions. In: Physica D: Nonlinear Phenomena. Elsevier. 2025, 476, 134617. ISSN 0167-2789. eISSN 1872-8022. Verfügbar unter: doi: 10.1016/j.physd.2025.134617BibTex
@article{BlessingNeamtu2025-06Detec-73768, title={Detecting random bifurcations via rigorous enclosures of large deviations rate functions}, year={2025}, doi={10.1016/j.physd.2025.134617}, volume={476}, issn={0167-2789}, journal={Physica D: Nonlinear Phenomena}, author={Blessing-Neamtu, Alexandra and Blumenthal, Alex and Breden, Maxime and Engel, Maximilian}, note={Article Number: 134617} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73768"> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Engel, Maximilian</dc:contributor> <dc:contributor>Blessing-Neamtu, Alexandra</dc:contributor> <dc:creator>Breden, Maxime</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73768/1/Blessing_2-cbudm4x9qcls2.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73768/1/Blessing_2-cbudm4x9qcls2.pdf"/> <dc:creator>Blessing-Neamtu, Alexandra</dc:creator> <dc:creator>Blumenthal, Alex</dc:creator> <dc:contributor>Blumenthal, Alex</dc:contributor> <dc:contributor>Breden, Maxime</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2025-06</dcterms:issued> <dc:creator>Engel, Maximilian</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:title>Detecting random bifurcations via rigorous enclosures of large deviations rate functions</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-01T07:45:45Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-01T07:45:45Z</dcterms:available> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73768"/> <dcterms:abstract>The main goal of this work is to provide a description of transitions from uniform to non-uniform snychronization in diffusions based on large deviation estimates for finite time Lyapunov exponents. These can be characterized in terms of moment Lyapunov exponents which are principal eigenvalues of the generator of the tilted (Feynman–Kac) semigroup. Using a computer assisted proof, we demonstrate how to determine these eigenvalues and investigate the rate function which is the Legendre–Fenchel transform of the moment Lyapunov function. We apply our results to two case studies: the pitchfork bifurcation and a two-dimensional toy model, also considering the transition to a positive asymptotic Lyapunov exponent.</dcterms:abstract> </rdf:Description> </rdf:RDF>