Publikation:

Algorithmic aspects of sums of hermitian squares

Lade...
Vorschaubild

Dateien

Burgdorf.pdf
Burgdorf.pdfGröße: 437.55 KBDownloads: 129

Datum

2012

Autor:innen

Cafuta, Kristijan
Povh, Janez

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This paper presents an algorithm and its implementation in the software package NCSOStools for finding sums of hermitian squares and commutators decompositions for polynomials in noncommuting variables. The algorithm is based on noncommutative analogs of the classical Gram matrix method and the Newton polytope method, which allows us to use semidefinite programming. For rational polynomials numerical evidence can be tweaked to obtain an exact certificate using rational numbers. In the presence of Slater points, the Peyrl-Parrilo rounding and projecting method applies. On the other hand, in the absence of strict feasibility, a variant of the facial reduction is proposed to reduce the size of the semidefinite program and to enforce the existence of Slater points.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

sum of squares, semidefinite programming, noncommutative polynomial, Matlab Toolbox, Newton polytope, free positivity

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690BURGDORF, Sabine, Kristijan CAFUTA, Igor KLEP, Janez POVH, 2012. Algorithmic aspects of sums of hermitian squares
BibTex
@techreport{Burgdorf2012Algor-15338,
  year={2012},
  series={Konstanzer Schriften in Mathematik},
  title={Algorithmic aspects of sums of hermitian squares},
  number={293},
  author={Burgdorf, Sabine and Cafuta, Kristijan and Klep, Igor and Povh, Janez}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15338">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">This paper presents an algorithm and its implementation in the software package NCSOStools for finding sums of hermitian squares and commutators decompositions for polynomials in noncommuting variables. The algorithm is based on noncommutative analogs of the classical Gram matrix method and the Newton polytope method, which allows us to use semidefinite programming. For rational polynomials numerical evidence can be tweaked to obtain an exact certificate using rational numbers. In the presence of Slater points, the Peyrl-Parrilo rounding and projecting method applies. On the other hand, in the absence of strict feasibility, a variant of the facial reduction is proposed to reduce the size of the semidefinite program and to enforce the existence of Slater points.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15338/2/Burgdorf.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dc:creator>Cafuta, Kristijan</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15338"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Burgdorf, Sabine</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-10T07:58:16Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-10T07:58:16Z</dc:date>
    <dc:creator>Burgdorf, Sabine</dc:creator>
    <dc:creator>Klep, Igor</dc:creator>
    <dc:creator>Povh, Janez</dc:creator>
    <dcterms:issued>2012</dcterms:issued>
    <dc:contributor>Cafuta, Kristijan</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15338/2/Burgdorf.pdf"/>
    <dc:contributor>Povh, Janez</dc:contributor>
    <dcterms:title>Algorithmic aspects of sums of hermitian squares</dcterms:title>
    <dc:contributor>Klep, Igor</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen