Spectral stability of shock waves associated with not genuinely nonlinear modes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study viscous shock waves that are associated with a simple mode (λ,r) of a system ut+f(u)x=uxx of conservation laws and that connect states on either side of an ‘inflection’ hypersurface Σ in state space at whose points r⋅∇λ=0 and (r⋅∇)2λ≠0. Such loss of genuine nonlinearity, the simplest example of which is the cubic scalar conservation law ut+(u3)x=uxx, occurs in many physical systems. We show that such shock waves are spectrally stable if their amplitude is sufficiently small. The proof is based on a direct analysis of the eigenvalue problem by means of geometric singular perturbation theory. Well-chosen rescalings are crucial for resolving degeneracies. By results of Zumbrun the spectral stability shown here implies nonlinear stability of these shock waves.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FREISTÜHLER, Heinrich, Peter SZMOLYAN, Johannes WÄCHTLER, 2014. Spectral stability of shock waves associated with not genuinely nonlinear modes. In: Journal of Differential Equations. 2014, 257(1), pp. 185-206. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2014.03.018BibTex
@article{Freistuhler2014Spect-30127, year={2014}, doi={10.1016/j.jde.2014.03.018}, title={Spectral stability of shock waves associated with not genuinely nonlinear modes}, number={1}, volume={257}, issn={0022-0396}, journal={Journal of Differential Equations}, pages={185--206}, author={Freistühler, Heinrich and Szmolyan, Peter and Wächtler, Johannes} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30127"> <dc:contributor>Szmolyan, Peter</dc:contributor> <dc:contributor>Freistühler, Heinrich</dc:contributor> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Spectral stability of shock waves associated with not genuinely nonlinear modes</dcterms:title> <dc:creator>Szmolyan, Peter</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30127"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T17:52:22Z</dcterms:available> <dc:creator>Wächtler, Johannes</dc:creator> <dc:creator>Freistühler, Heinrich</dc:creator> <dcterms:issued>2014</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T17:52:22Z</dc:date> <dc:contributor>Wächtler, Johannes</dc:contributor> <dcterms:abstract xml:lang="eng">We study viscous shock waves that are associated with a simple mode (λ,r) of a system u<sub>t</sub>+f(u)<sub>x</sub>=u<sub>xx</sub> of conservation laws and that connect states on either side of an ‘inflection’ hypersurface Σ in state space at whose points r⋅∇λ=0 and (r⋅∇)<sup>2</sup>λ≠0. Such loss of genuine nonlinearity, the simplest example of which is the cubic scalar conservation law u<sub>t</sub>+(u<sup>3</sup>)<sub>x</sub>=u<sub>xx</sub>, occurs in many physical systems. We show that such shock waves are spectrally stable if their amplitude is sufficiently small. The proof is based on a direct analysis of the eigenvalue problem by means of geometric singular perturbation theory. Well-chosen rescalings are crucial for resolving degeneracies. By results of Zumbrun the spectral stability shown here implies nonlinear stability of these shock waves.</dcterms:abstract> </rdf:Description> </rdf:RDF>