Spectral stability of shock waves associated with not genuinely nonlinear modes

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Autor:innen
Freistühler, Heinrich
Szmolyan, Peter
Wächtler, Johannes
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Differential Equations. 2014, 257(1), pp. 185-206. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2014.03.018
Zusammenfassung

We study viscous shock waves that are associated with a simple mode (λ,r) of a system ut+f(u)x=uxx of conservation laws and that connect states on either side of an ‘inflection’ hypersurface Σ in state space at whose points r⋅∇λ=0 and (r⋅∇)2λ≠0. Such loss of genuine nonlinearity, the simplest example of which is the cubic scalar conservation law ut+(u3)x=uxx, occurs in many physical systems. We show that such shock waves are spectrally stable if their amplitude is sufficiently small. The proof is based on a direct analysis of the eigenvalue problem by means of geometric singular perturbation theory. Well-chosen rescalings are crucial for resolving degeneracies. By results of Zumbrun the spectral stability shown here implies nonlinear stability of these shock waves.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Viscous shock waves, Spectral stability, Evans function, Geometric singular perturbation theory
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690FREISTÜHLER, Heinrich, Peter SZMOLYAN, Johannes WÄCHTLER, 2014. Spectral stability of shock waves associated with not genuinely nonlinear modes. In: Journal of Differential Equations. 2014, 257(1), pp. 185-206. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2014.03.018
BibTex
@article{Freistuhler2014Spect-30127,
  year={2014},
  doi={10.1016/j.jde.2014.03.018},
  title={Spectral stability of shock waves associated with not genuinely nonlinear modes},
  number={1},
  volume={257},
  issn={0022-0396},
  journal={Journal of Differential Equations},
  pages={185--206},
  author={Freistühler, Heinrich and Szmolyan, Peter and Wächtler, Johannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30127">
    <dc:contributor>Szmolyan, Peter</dc:contributor>
    <dc:contributor>Freistühler, Heinrich</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Spectral stability of shock waves associated with not genuinely nonlinear modes</dcterms:title>
    <dc:creator>Szmolyan, Peter</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30127"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T17:52:22Z</dcterms:available>
    <dc:creator>Wächtler, Johannes</dc:creator>
    <dc:creator>Freistühler, Heinrich</dc:creator>
    <dcterms:issued>2014</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T17:52:22Z</dc:date>
    <dc:contributor>Wächtler, Johannes</dc:contributor>
    <dcterms:abstract xml:lang="eng">We study viscous shock waves that are associated with a simple mode (λ,r) of a system u&lt;sub&gt;t&lt;/sub&gt;+f(u)&lt;sub&gt;x&lt;/sub&gt;=u&lt;sub&gt;xx&lt;/sub&gt; of conservation laws and that connect states on either side of an ‘inflection’ hypersurface Σ   in state space at whose points r⋅∇λ=0 and (r⋅∇)&lt;sup&gt;2&lt;/sup&gt;λ≠0. Such loss of genuine nonlinearity, the simplest example of which is the cubic scalar conservation law u&lt;sub&gt;t&lt;/sub&gt;+(u&lt;sup&gt;3&lt;/sup&gt;)&lt;sub&gt;x&lt;/sub&gt;=u&lt;sub&gt;xx&lt;/sub&gt;, occurs in many physical systems. We show that such shock waves are spectrally stable if their amplitude is sufficiently small. The proof is based on a direct analysis of the eigenvalue problem by means of geometric singular perturbation theory. Well-chosen rescalings are crucial for resolving degeneracies. By results of Zumbrun the spectral stability shown here implies nonlinear stability of these shock waves.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen