Spectral stability of shock waves associated with not genuinely nonlinear modes
Spectral stability of shock waves associated with not genuinely nonlinear modes
No Thumbnail Available
Files
There are no files associated with this item.
Date
2014
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Journal of Differential Equations ; 257 (2014), 1. - pp. 185-206. - ISSN 0022-0396. - eISSN 1090-2732
Abstract
We study viscous shock waves that are associated with a simple mode (λ,r) of a system ut+f(u)x=uxx of conservation laws and that connect states on either side of an ‘inflection’ hypersurface Σ in state space at whose points r⋅∇λ=0 and (r⋅∇)2λ≠0. Such loss of genuine nonlinearity, the simplest example of which is the cubic scalar conservation law ut+(u3)x=uxx, occurs in many physical systems. We show that such shock waves are spectrally stable if their amplitude is sufficiently small. The proof is based on a direct analysis of the eigenvalue problem by means of geometric singular perturbation theory. Well-chosen rescalings are crucial for resolving degeneracies. By results of Zumbrun the spectral stability shown here implies nonlinear stability of these shock waves.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Viscous shock waves, Spectral stability, Evans function, Geometric singular perturbation theory
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
FREISTÜHLER, Heinrich, Peter SZMOLYAN, Johannes WÄCHTLER, 2014. Spectral stability of shock waves associated with not genuinely nonlinear modes. In: Journal of Differential Equations. 257(1), pp. 185-206. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2014.03.018BibTex
@article{Freistuhler2014Spect-30127, year={2014}, doi={10.1016/j.jde.2014.03.018}, title={Spectral stability of shock waves associated with not genuinely nonlinear modes}, number={1}, volume={257}, issn={0022-0396}, journal={Journal of Differential Equations}, pages={185--206}, author={Freistühler, Heinrich and Szmolyan, Peter and Wächtler, Johannes} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30127"> <dc:contributor>Szmolyan, Peter</dc:contributor> <dc:contributor>Freistühler, Heinrich</dc:contributor> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Spectral stability of shock waves associated with not genuinely nonlinear modes</dcterms:title> <dc:creator>Szmolyan, Peter</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30127"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T17:52:22Z</dcterms:available> <dc:creator>Wächtler, Johannes</dc:creator> <dc:creator>Freistühler, Heinrich</dc:creator> <dcterms:issued>2014</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T17:52:22Z</dc:date> <dc:contributor>Wächtler, Johannes</dc:contributor> <dcterms:abstract xml:lang="eng">We study viscous shock waves that are associated with a simple mode (λ,r) of a system u<sub>t</sub>+f(u)<sub>x</sub>=u<sub>xx</sub> of conservation laws and that connect states on either side of an ‘inflection’ hypersurface Σ in state space at whose points r⋅∇λ=0 and (r⋅∇)<sup>2</sup>λ≠0. Such loss of genuine nonlinearity, the simplest example of which is the cubic scalar conservation law u<sub>t</sub>+(u<sup>3</sup>)<sub>x</sub>=u<sub>xx</sub>, occurs in many physical systems. We show that such shock waves are spectrally stable if their amplitude is sufficiently small. The proof is based on a direct analysis of the eigenvalue problem by means of geometric singular perturbation theory. Well-chosen rescalings are crucial for resolving degeneracies. By results of Zumbrun the spectral stability shown here implies nonlinear stability of these shock waves.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes