Publikation:

Spectral stability of shock waves associated with not genuinely nonlinear modes

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Differential Equations. 2014, 257(1), pp. 185-206. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2014.03.018

Zusammenfassung

We study viscous shock waves that are associated with a simple mode (λ,r) of a system ut+f(u)x=uxx of conservation laws and that connect states on either side of an ‘inflection’ hypersurface Σ in state space at whose points r⋅∇λ=0 and (r⋅∇)2λ≠0. Such loss of genuine nonlinearity, the simplest example of which is the cubic scalar conservation law ut+(u3)x=uxx, occurs in many physical systems. We show that such shock waves are spectrally stable if their amplitude is sufficiently small. The proof is based on a direct analysis of the eigenvalue problem by means of geometric singular perturbation theory. Well-chosen rescalings are crucial for resolving degeneracies. By results of Zumbrun the spectral stability shown here implies nonlinear stability of these shock waves.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Viscous shock waves, Spectral stability, Evans function, Geometric singular perturbation theory

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FREISTÜHLER, Heinrich, Peter SZMOLYAN, Johannes WÄCHTLER, 2014. Spectral stability of shock waves associated with not genuinely nonlinear modes. In: Journal of Differential Equations. 2014, 257(1), pp. 185-206. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2014.03.018
BibTex
@article{Freistuhler2014Spect-30127,
  year={2014},
  doi={10.1016/j.jde.2014.03.018},
  title={Spectral stability of shock waves associated with not genuinely nonlinear modes},
  number={1},
  volume={257},
  issn={0022-0396},
  journal={Journal of Differential Equations},
  pages={185--206},
  author={Freistühler, Heinrich and Szmolyan, Peter and Wächtler, Johannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30127">
    <dc:contributor>Szmolyan, Peter</dc:contributor>
    <dc:contributor>Freistühler, Heinrich</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Spectral stability of shock waves associated with not genuinely nonlinear modes</dcterms:title>
    <dc:creator>Szmolyan, Peter</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30127"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T17:52:22Z</dcterms:available>
    <dc:creator>Wächtler, Johannes</dc:creator>
    <dc:creator>Freistühler, Heinrich</dc:creator>
    <dcterms:issued>2014</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-27T17:52:22Z</dc:date>
    <dc:contributor>Wächtler, Johannes</dc:contributor>
    <dcterms:abstract xml:lang="eng">We study viscous shock waves that are associated with a simple mode (λ,r) of a system u&lt;sub&gt;t&lt;/sub&gt;+f(u)&lt;sub&gt;x&lt;/sub&gt;=u&lt;sub&gt;xx&lt;/sub&gt; of conservation laws and that connect states on either side of an ‘inflection’ hypersurface Σ   in state space at whose points r⋅∇λ=0 and (r⋅∇)&lt;sup&gt;2&lt;/sup&gt;λ≠0. Such loss of genuine nonlinearity, the simplest example of which is the cubic scalar conservation law u&lt;sub&gt;t&lt;/sub&gt;+(u&lt;sup&gt;3&lt;/sup&gt;)&lt;sub&gt;x&lt;/sub&gt;=u&lt;sub&gt;xx&lt;/sub&gt;, occurs in many physical systems. We show that such shock waves are spectrally stable if their amplitude is sufficiently small. The proof is based on a direct analysis of the eigenvalue problem by means of geometric singular perturbation theory. Well-chosen rescalings are crucial for resolving degeneracies. By results of Zumbrun the spectral stability shown here implies nonlinear stability of these shock waves.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen