Motor learning induces time‐dependent plasticity that is observable at the spinal cord level
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Spinal cord plasticity is an important contributor of motor learning in humans, but its mechanisms are still poorly documented. In particular, it remains unclear whether short-term spinal adaptations are general or task-specific.
As a marker of neural changes that are observable at spinal level, we measured the H-reflex amplitude in the soleus muscle of 18 young healthy human adults before, immediately after (acquisition), and 24 h after (retention) the learning of a skilled task (i.e., one-legged stance on a tilt board). H-reflexes were elicited 46 ± 30 ms before touching the tilt board. Additionally, and at the same time points, we measured the H-reflex with the subject sitting at rest and while performing an unskilled and untrained task (i.e., one-legged stance on the floor).
After task acquisition, there was a decrease of the H-reflex amplitude measured at rest but not during the skilled or the unskilled task. At retention, there was a decrease of the H-reflex when measured during the skilled task but not during the unskilled task or at rest. Performance increase was not associated with changes in the H-reflex amplitude.
After the acquisition of a new skilled task, spinal changes seemed to be general (i.e., observable at rest). However, 24 h after, these changes were task-specific (i.e., observable only while performing the trained task). These results imply that skill training induces a time-dependent reorganization of the modulation of spinal networks, which possibly reflects a time-dependent optimization of the feedforward motor command.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GIBOIN, Louis-Solal, Craig TOKUNO, Andreas KRAMER, Mélanie HENRY, Markus GRUBER, 2020. Motor learning induces time‐dependent plasticity that is observable at the spinal cord level. In: The Journal of Physiology. Wiley. 2020, 598(10), pp. 1943-1963. ISSN 0022-3751. eISSN 1469-7793. Available under: doi: 10.1113/JP278890BibTex
@article{Giboin2020-05Motor-48989, year={2020}, doi={10.1113/JP278890}, title={Motor learning induces time‐dependent plasticity that is observable at the spinal cord level}, number={10}, volume={598}, issn={0022-3751}, journal={The Journal of Physiology}, pages={1943--1963}, author={Giboin, Louis-Solal and Tokuno, Craig and Kramer, Andreas and Henry, Mélanie and Gruber, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48989"> <dc:creator>Gruber, Markus</dc:creator> <dc:contributor>Gruber, Markus</dc:contributor> <dc:creator>Tokuno, Craig</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Giboin, Louis-Solal</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-10T12:23:40Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Kramer, Andreas</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48989/1/Giboin_2-c7w22jp2oc001.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48989"/> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:abstract xml:lang="eng">Spinal cord plasticity is an important contributor of motor learning in humans, but its mechanisms are still poorly documented. In particular, it remains unclear whether short-term spinal adaptations are general or task-specific.<br />As a marker of neural changes that are observable at spinal level, we measured the H-reflex amplitude in the soleus muscle of 18 young healthy human adults before, immediately after (acquisition), and 24 h after (retention) the learning of a skilled task (i.e., one-legged stance on a tilt board). H-reflexes were elicited 46 ± 30 ms before touching the tilt board. Additionally, and at the same time points, we measured the H-reflex with the subject sitting at rest and while performing an unskilled and untrained task (i.e., one-legged stance on the floor).<br />After task acquisition, there was a decrease of the H-reflex amplitude measured at rest but not during the skilled or the unskilled task. At retention, there was a decrease of the H-reflex when measured during the skilled task but not during the unskilled task or at rest. Performance increase was not associated with changes in the H-reflex amplitude.<br />After the acquisition of a new skilled task, spinal changes seemed to be general (i.e., observable at rest). However, 24 h after, these changes were task-specific (i.e., observable only while performing the trained task). These results imply that skill training induces a time-dependent reorganization of the modulation of spinal networks, which possibly reflects a time-dependent optimization of the feedforward motor command.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48989/1/Giboin_2-c7w22jp2oc001.pdf"/> <dc:creator>Henry, Mélanie</dc:creator> <dcterms:title>Motor learning induces time‐dependent plasticity that is observable at the spinal cord level</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-10T12:23:40Z</dc:date> <dc:contributor>Kramer, Andreas</dc:contributor> <dc:contributor>Henry, Mélanie</dc:contributor> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Tokuno, Craig</dc:contributor> <dc:contributor>Giboin, Louis-Solal</dc:contributor> <dcterms:issued>2020-05</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35"/> </rdf:Description> </rdf:RDF>