Runge–Kutta Methods for Monotone Differential and Delay Equations
Runge–Kutta Methods for Monotone Differential and Delay Equations
No Thumbnail Available
Files
There are no files associated with this item.
Date
2003
Authors
Kloeden, Peter E.
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
BIT - Numerical Mathematics ; 43 (2003), 3. - pp. 571-586. - ISSN 0006-3835. - eISSN 1572-9125
Abstract
Classes of Runge–Kutta methods preserving the monotonicity of ordinary and delay differential equations are identified. Essentially, the vector b and the matrix A from the Butcher tableau should be such that all components of b are positive and all components of the matrix B(r)A, where B(r) is the inverse of the matrix I+rA, are nonnegative for sufficiently small positive r. The latter is satisfied by all explicit, diagonally-implicit and fully implicit Runge–Kutta methods for which all of the components of the matrix A, except those that are zero by definition, are positive.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
monotone dynamical systems, delay equations, Runge–Kutta methods
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
KLOEDEN, Peter E., Johannes SCHROPP, 2003. Runge–Kutta Methods for Monotone Differential and Delay Equations. In: BIT - Numerical Mathematics. 43(3), pp. 571-586. ISSN 0006-3835. eISSN 1572-9125. Available under: doi: 10.1023/B:BITN.0000007059.99601.18BibTex
@article{Kloeden2003-09Runge-43197, year={2003}, doi={10.1023/B:BITN.0000007059.99601.18}, title={Runge–Kutta Methods for Monotone Differential and Delay Equations}, number={3}, volume={43}, issn={0006-3835}, journal={BIT - Numerical Mathematics}, pages={571--586}, author={Kloeden, Peter E. and Schropp, Johannes} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43197"> <dc:contributor>Kloeden, Peter E.</dc:contributor> <dcterms:issued>2003-09</dcterms:issued> <dcterms:abstract xml:lang="eng">Classes of Runge–Kutta methods preserving the monotonicity of ordinary and delay differential equations are identified. Essentially, the vector b and the matrix A from the Butcher tableau should be such that all components of b are positive and all components of the matrix B(r)A, where B(r) is the inverse of the matrix I+rA, are nonnegative for sufficiently small positive r. The latter is satisfied by all explicit, diagonally-implicit and fully implicit Runge–Kutta methods for which all of the components of the matrix A, except those that are zero by definition, are positive.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-07T09:30:02Z</dcterms:available> <dcterms:title>Runge–Kutta Methods for Monotone Differential and Delay Equations</dcterms:title> <dc:contributor>Schropp, Johannes</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Kloeden, Peter E.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43197"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-07T09:30:02Z</dc:date> <dc:creator>Schropp, Johannes</dc:creator> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown