Sums of squares on reducible real curves

No Thumbnail Available
Files
There are no files associated with this item.
Date
2010
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Mathematische Zeitschrift ; 265 (2010), 4. - pp. 777-797. - Springer. - ISSN 0025-5874. - eISSN 1432-1823
Abstract
We ask whether every polynomial function that is non-negative on a real algebraic curve can be expressed as a sum of squares in the coordinate ring. Scheiderer has classified all irreducible curves for which this is the case. For reducible curves, we show how the answer depends on the configuration of the irreducible components and give complete necessary and sufficient conditions. We also prove partial results in the more general case of finitely generated preorderings and discuss applications to the moment problem for semialgebraic sets.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690PLAUMANN, Daniel, 2010. Sums of squares on reducible real curves. In: Mathematische Zeitschrift. Springer. 265(4), pp. 777-797. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-009-0541-8
BibTex
@article{Plaumann2010-08squar-51598,
  year={2010},
  doi={10.1007/s00209-009-0541-8},
  title={Sums of squares on reducible real curves},
  number={4},
  volume={265},
  issn={0025-5874},
  journal={Mathematische Zeitschrift},
  pages={777--797},
  author={Plaumann, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51598">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2010-08</dcterms:issued>
    <dc:creator>Plaumann, Daniel</dc:creator>
    <dcterms:title>Sums of squares on reducible real curves</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Plaumann, Daniel</dc:contributor>
    <dcterms:abstract xml:lang="eng">We ask whether every polynomial function that is non-negative on a real algebraic curve can be expressed as a sum of squares in the coordinate ring. Scheiderer has classified all irreducible curves for which this is the case. For reducible curves, we show how the answer depends on the configuration of the irreducible components and give complete necessary and sufficient conditions. We also prove partial results in the more general case of finitely generated preorderings and discuss applications to the moment problem for semialgebraic sets.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-03T07:46:08Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-03T07:46:08Z</dc:date>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51598"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes