Publikation:

Sums of squares on reducible real curves

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Mathematische Zeitschrift. Springer. 2010, 265(4), pp. 777-797. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-009-0541-8

Zusammenfassung

We ask whether every polynomial function that is non-negative on a real algebraic curve can be expressed as a sum of squares in the coordinate ring. Scheiderer has classified all irreducible curves for which this is the case. For reducible curves, we show how the answer depends on the configuration of the irreducible components and give complete necessary and sufficient conditions. We also prove partial results in the more general case of finitely generated preorderings and discuss applications to the moment problem for semialgebraic sets.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PLAUMANN, Daniel, 2010. Sums of squares on reducible real curves. In: Mathematische Zeitschrift. Springer. 2010, 265(4), pp. 777-797. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-009-0541-8
BibTex
@article{Plaumann2010-08squar-51598,
  year={2010},
  doi={10.1007/s00209-009-0541-8},
  title={Sums of squares on reducible real curves},
  number={4},
  volume={265},
  issn={0025-5874},
  journal={Mathematische Zeitschrift},
  pages={777--797},
  author={Plaumann, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51598">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2010-08</dcterms:issued>
    <dc:creator>Plaumann, Daniel</dc:creator>
    <dcterms:title>Sums of squares on reducible real curves</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Plaumann, Daniel</dc:contributor>
    <dcterms:abstract xml:lang="eng">We ask whether every polynomial function that is non-negative on a real algebraic curve can be expressed as a sum of squares in the coordinate ring. Scheiderer has classified all irreducible curves for which this is the case. For reducible curves, we show how the answer depends on the configuration of the irreducible components and give complete necessary and sufficient conditions. We also prove partial results in the more general case of finitely generated preorderings and discuss applications to the moment problem for semialgebraic sets.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-03T07:46:08Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-03T07:46:08Z</dc:date>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51598"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen