Sums of squares on reducible real curves
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2010
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematische Zeitschrift. Springer. 2010, 265(4), pp. 777-797. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-009-0541-8
Zusammenfassung
We ask whether every polynomial function that is non-negative on a real algebraic curve can be expressed as a sum of squares in the coordinate ring. Scheiderer has classified all irreducible curves for which this is the case. For reducible curves, we show how the answer depends on the configuration of the irreducible components and give complete necessary and sufficient conditions. We also prove partial results in the more general case of finitely generated preorderings and discuss applications to the moment problem for semialgebraic sets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
PLAUMANN, Daniel, 2010. Sums of squares on reducible real curves. In: Mathematische Zeitschrift. Springer. 2010, 265(4), pp. 777-797. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-009-0541-8BibTex
@article{Plaumann2010-08squar-51598, year={2010}, doi={10.1007/s00209-009-0541-8}, title={Sums of squares on reducible real curves}, number={4}, volume={265}, issn={0025-5874}, journal={Mathematische Zeitschrift}, pages={777--797}, author={Plaumann, Daniel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51598"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2010-08</dcterms:issued> <dc:creator>Plaumann, Daniel</dc:creator> <dcterms:title>Sums of squares on reducible real curves</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Plaumann, Daniel</dc:contributor> <dcterms:abstract xml:lang="eng">We ask whether every polynomial function that is non-negative on a real algebraic curve can be expressed as a sum of squares in the coordinate ring. Scheiderer has classified all irreducible curves for which this is the case. For reducible curves, we show how the answer depends on the configuration of the irreducible components and give complete necessary and sufficient conditions. We also prove partial results in the more general case of finitely generated preorderings and discuss applications to the moment problem for semialgebraic sets.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-03T07:46:08Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-03T07:46:08Z</dc:date> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51598"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja