Sums of squares on reducible real curves

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2010
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematische Zeitschrift. Springer. 2010, 265(4), pp. 777-797. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-009-0541-8
Zusammenfassung

We ask whether every polynomial function that is non-negative on a real algebraic curve can be expressed as a sum of squares in the coordinate ring. Scheiderer has classified all irreducible curves for which this is the case. For reducible curves, we show how the answer depends on the configuration of the irreducible components and give complete necessary and sufficient conditions. We also prove partial results in the more general case of finitely generated preorderings and discuss applications to the moment problem for semialgebraic sets.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690PLAUMANN, Daniel, 2010. Sums of squares on reducible real curves. In: Mathematische Zeitschrift. Springer. 2010, 265(4), pp. 777-797. ISSN 0025-5874. eISSN 1432-1823. Available under: doi: 10.1007/s00209-009-0541-8
BibTex
@article{Plaumann2010-08squar-51598,
  year={2010},
  doi={10.1007/s00209-009-0541-8},
  title={Sums of squares on reducible real curves},
  number={4},
  volume={265},
  issn={0025-5874},
  journal={Mathematische Zeitschrift},
  pages={777--797},
  author={Plaumann, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51598">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2010-08</dcterms:issued>
    <dc:creator>Plaumann, Daniel</dc:creator>
    <dcterms:title>Sums of squares on reducible real curves</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Plaumann, Daniel</dc:contributor>
    <dcterms:abstract xml:lang="eng">We ask whether every polynomial function that is non-negative on a real algebraic curve can be expressed as a sum of squares in the coordinate ring. Scheiderer has classified all irreducible curves for which this is the case. For reducible curves, we show how the answer depends on the configuration of the irreducible components and give complete necessary and sufficient conditions. We also prove partial results in the more general case of finitely generated preorderings and discuss applications to the moment problem for semialgebraic sets.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-03T07:46:08Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-03T07:46:08Z</dc:date>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51598"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen