Communication-Free Widened Learning of Bayesian Network Classifiers Using Hashed Fiedler Vectors
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Widening is a method where parallel resources are used to find better solutions from algorithms instead of merely trying to find the same solutions more quickly. To date, every example of Widening has used some from of communiucation between the parallel workers to maintain their distances from one another in the model space. For the first time, we present a communication-free, widened extension to a standard machine learning algorithm. By using Locality Sensitive Hashing on the Bayesian networks' Fiedler vectors, we demonstrate the ability to learn classifiers superior to those standard implementations and to those generated with a greedy heuristic alone
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SAMPSON, Oliver R., Christian BORGELT, Michael R. BERTHOLD, 2018. Communication-Free Widened Learning of Bayesian Network Classifiers Using Hashed Fiedler Vectors. 17th International Symposium, IDA 2018. ’s-Hertogenbosch, The Netherlands, 24. Okt. 2018 - 26. Okt. 2018. In: DUIVESTEIJN, Wouter, ed., Arno SIEBES, ed., Antti UKKONEN, ed.. Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018, proceedings. Cham: Springer, 2018, pp. 264-277. Lecture Notes in Computer Science. 11191. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-01767-5. Available under: doi: 10.1007/978-3-030-01768-2_22BibTex
@inproceedings{Sampson2018-10-05Commu-44696, year={2018}, doi={10.1007/978-3-030-01768-2_22}, title={Communication-Free Widened Learning of Bayesian Network Classifiers Using Hashed Fiedler Vectors}, number={11191}, isbn={978-3-030-01767-5}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018, proceedings}, pages={264--277}, editor={Duivesteijn, Wouter and Siebes, Arno and Ukkonen, Antti}, author={Sampson, Oliver R. and Borgelt, Christian and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44696"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Borgelt, Christian</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44696"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44696/1/Sampson_2-bn89p9g927ii7.pdf"/> <dcterms:title>Communication-Free Widened Learning of Bayesian Network Classifiers Using Hashed Fiedler Vectors</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T13:44:40Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T13:44:40Z</dcterms:available> <dcterms:issued>2018-10-05</dcterms:issued> <dc:creator>Berthold, Michael R.</dc:creator> <dc:language>eng</dc:language> <dc:creator>Borgelt, Christian</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Widening is a method where parallel resources are used to find better solutions from algorithms instead of merely trying to find the same solutions more quickly. To date, every example of Widening has used some from of communiucation between the parallel workers to maintain their distances from one another in the model space. For the first time, we present a communication-free, widened extension to a standard machine learning algorithm. By using Locality Sensitive Hashing on the Bayesian networks' Fiedler vectors, we demonstrate the ability to learn classifiers superior to those standard implementations and to those generated with a greedy heuristic alone</dcterms:abstract> <dc:contributor>Sampson, Oliver R.</dc:contributor> <dc:creator>Sampson, Oliver R.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44696/1/Sampson_2-bn89p9g927ii7.pdf"/> </rdf:Description> </rdf:RDF>