Getting there first : real-time detection of real-world incidents on Twitter
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Social networking and micro-blogging services such as Twitter have become a valuable source of information on current events. Widespread use of Twitter on mobile devices and personal computers enables users to share short messages on any subject in real-time, thus making it suitable for early detection of unexpected events where fast response is critical. In this paper, we present an online method for detection of real-world events in Twitter data, such as natural disasters or man-made catastrophes, by analyzing Twitter data. Our method combines different textual and frequency components that represent or approximate interesting semantic aspects of an event. We use visualization as a validation vehicle, which allows us to understand which components are relevant and what impact the parameters have on the results of our event detection algorithm.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KRSTAJIC, Milos, Christian ROHRDANTZ, Michael BLUMENSCHEIN, Andreas WEILER, 2012. Getting there first : real-time detection of real-world incidents on TwitterBibTex
@inproceedings{Krstajic2012Getti-22949, year={2012}, title={Getting there first : real-time detection of real-world incidents on Twitter}, author={Krstajic, Milos and Rohrdantz, Christian and Blumenschein, Michael and Weiler, Andreas}, note={2nd Workshop on Interactive Visual Text Analytics : Task-Driven Analysis of Social Media Content with Visweek’12.<br /> Oct. 2012.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22949"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Krstajic, Milos</dc:contributor> <dc:creator>Krstajic, Milos</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Blumenschein, Michael</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-06T07:22:28Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-06T07:22:28Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22949/1/Getting-There-First%20edit.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22949/1/Getting-There-First%20edit.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Weiler, Andreas</dc:creator> <dc:creator>Rohrdantz, Christian</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22949"/> <dcterms:abstract xml:lang="eng">Social networking and micro-blogging services such as Twitter have become a valuable source of information on current events. Widespread use of Twitter on mobile devices and personal computers enables users to share short messages on any subject in real-time, thus making it suitable for early detection of unexpected events where fast response is critical. In this paper, we present an online method for detection of real-world events in Twitter data, such as natural disasters or man-made catastrophes, by analyzing Twitter data. Our method combines different textual and frequency components that represent or approximate interesting semantic aspects of an event. We use visualization as a validation vehicle, which allows us to understand which components are relevant and what impact the parameters have on the results of our event detection algorithm.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:issued>2012</dcterms:issued> <dc:creator>Blumenschein, Michael</dc:creator> <dc:contributor>Rohrdantz, Christian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Weiler, Andreas</dc:contributor> <dcterms:title>Getting there first : real-time detection of real-world incidents on Twitter</dcterms:title> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Oct. 2012.