Publikation: Opinion Marks : A Human-Based Computation Approach to Instill Structure into Unstructured Text on the Web
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Despite recent improvements in computational approaches such as
machine learning, natural language processing, and computational
linguistics, making a computer understand human-generated unstructured
text still remains a difficult problem to solve. To alleviate
the challenges, we propose an approach called “Opinion Marks,”
which enables writers to mark positive and negative aspects of a
topic on their own text. In addition, Opinion Marks incorporates an
automatic marking suggestion algorithm to offload a user’s marking
effort. The phrases marked with Opinion Marks can be further
used to clarify the sentiments of other text in a similar context.
We implemented Opinion Marks at a question answering website
http://caniask.net. To test the efficacy of Opinion Marks, we
conducted a crowdsourced experiment with 144 participants in a
between-subject design under three different conditions: 1) human
marking only; 2) machine marking only (automatic marking suggestion);
and 3) human-machine collaboration (Opinion Marks).
This study revealed that Opinion Marks significantly improves the
quality of marked phrases and usability of the system.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KWON, Bum Chul, Jaegul CHOO, Sung-Hee KIM, Daniel A. KEIM, Haesun PARK, Ji Soo YI, 2015. Opinion Marks : A Human-Based Computation Approach to Instill Structure into Unstructured Text on the Web. KDD 2015 Workshop on Interactive Data Exploration and Analytics (IDEA’15). Sydney, 13. Aug. 2015. In: POLO CHAU, , ed. and others. Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics Permission. New York: ACM, 2015, pp. 47-55BibTex
@inproceedings{Kwon2015Opini-32597, year={2015}, title={Opinion Marks : A Human-Based Computation Approach to Instill Structure into Unstructured Text on the Web}, url={http://poloclub.gatech.edu/idea2015/papers/p47-kwon.pdf}, publisher={ACM}, address={New York}, booktitle={Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics Permission}, pages={47--55}, editor={Polo Chau}, author={Kwon, Bum Chul and Choo, Jaegul and Kim, Sung-Hee and Keim, Daniel A. and Park, Haesun and Yi, Ji Soo} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32597"> <dcterms:title>Opinion Marks : A Human-Based Computation Approach to Instill Structure into Unstructured Text on the Web</dcterms:title> <dc:creator>Keim, Daniel A.</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Yi, Ji Soo</dc:contributor> <dc:creator>Park, Haesun</dc:creator> <dc:creator>Choo, Jaegul</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-15T08:33:21Z</dcterms:available> <dc:contributor>Choo, Jaegul</dc:contributor> <dc:contributor>Kim, Sung-Hee</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Kim, Sung-Hee</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32597/1/Kwon_0-301049.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-15T08:33:21Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32597/1/Kwon_0-301049.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Kwon, Bum Chul</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2015</dcterms:issued> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Despite recent improvements in computational approaches such as<br />machine learning, natural language processing, and computational<br />linguistics, making a computer understand human-generated unstructured<br />text still remains a difficult problem to solve. To alleviate<br />the challenges, we propose an approach called “Opinion Marks,”<br />which enables writers to mark positive and negative aspects of a<br />topic on their own text. In addition, Opinion Marks incorporates an<br />automatic marking suggestion algorithm to offload a user’s marking<br />effort. The phrases marked with Opinion Marks can be further<br />used to clarify the sentiments of other text in a similar context.<br />We implemented Opinion Marks at a question answering website<br />http://caniask.net. To test the efficacy of Opinion Marks, we<br />conducted a crowdsourced experiment with 144 participants in a<br />between-subject design under three different conditions: 1) human<br />marking only; 2) machine marking only (automatic marking suggestion);<br />and 3) human-machine collaboration (Opinion Marks).<br />This study revealed that Opinion Marks significantly improves the<br />quality of marked phrases and usability of the system.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32597"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Kwon, Bum Chul</dc:creator> <dc:creator>Yi, Ji Soo</dc:creator> <dc:contributor>Park, Haesun</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> </rdf:Description> </rdf:RDF>