A conceptual framework and taxonomy of techniques for analyzing movement
A conceptual framework and taxonomy of techniques for analyzing movement
Lade...
Datum
2011
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Erschienen in
Journal of Visual Languages & Computing ; 22 (2011), 3. - S. 213-232. - ISSN 1045-926X
Zusammenfassung
Movement data link together space, time, and objects positioned in space and time. They hold valuable and multifaceted information about moving objects, properties of space and time as well as events and processes occurring in space and time. We present a conceptual framework that describes in a systematic and comprehensive way the possible types of information that can be extracted from movement data and on this basis defines the respective types of analytical tasks. Tasks are distinguished according to the type of information they target and according to the level of analysis, which may be elementary (i.e. addressing specific elements of a set) or synoptic (i.e. addressing a set or subsets). We also present a taxonomy of generic analytic techniques, in which the types of tasks are linked to the corresponding classes of techniques that can support fulfilling them. We include techniques from several research fields: visualization and visual analytics, geographic information science, database technology, and data mining.
We expect the taxonomy to be valuable for analysts and researchers. Analysts will receive guidance in choosing suitable analytic techniques for their data and tasks. Researchers will learn what approaches exist in different fields and compare or relate them to the approaches they are going to undertake.
We expect the taxonomy to be valuable for analysts and researchers. Analysts will receive guidance in choosing suitable analytic techniques for their data and tasks. Researchers will learn what approaches exist in different fields and compare or relate them to the approaches they are going to undertake.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Moving object,Trajectory,Movement data,Visual analytics
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
ANDRIENKO, Gennady, Nathaliya ANDRIENKO, Peter BAK, Daniel A. KEIM, Slava KISILEVICH, Stefan WROBEL, 2011. A conceptual framework and taxonomy of techniques for analyzing movement. In: Journal of Visual Languages & Computing. 22(3), pp. 213-232. ISSN 1045-926X. Available under: doi: 10.1016/j.jvlc.2011.02.003BibTex
@article{Andrienko2011conce-19089, year={2011}, doi={10.1016/j.jvlc.2011.02.003}, title={A conceptual framework and taxonomy of techniques for analyzing movement}, number={3}, volume={22}, issn={1045-926X}, journal={Journal of Visual Languages & Computing}, pages={213--232}, author={Andrienko, Gennady and Andrienko, Nathaliya and Bak, Peter and Keim, Daniel A. and Kisilevich, Slava and Wrobel, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19089"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>A conceptual framework and taxonomy of techniques for analyzing movement</dcterms:title> <dc:creator>Kisilevich, Slava</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-19T13:28:45Z</dcterms:available> <dcterms:bibliographicCitation>Publ. in: Journal of Visual Languages & Computing ; 22 (2011), 3. - pp. 213-232</dcterms:bibliographicCitation> <dcterms:issued>2011</dcterms:issued> <dc:contributor>Andrienko, Gennady</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19089/2/Andrienko_190896.pdf"/> <dcterms:abstract xml:lang="eng">Movement data link together space, time, and objects positioned in space and time. They hold valuable and multifaceted information about moving objects, properties of space and time as well as events and processes occurring in space and time. We present a conceptual framework that describes in a systematic and comprehensive way the possible types of information that can be extracted from movement data and on this basis defines the respective types of analytical tasks. Tasks are distinguished according to the type of information they target and according to the level of analysis, which may be elementary (i.e. addressing specific elements of a set) or synoptic (i.e. addressing a set or subsets). We also present a taxonomy of generic analytic techniques, in which the types of tasks are linked to the corresponding classes of techniques that can support fulfilling them. We include techniques from several research fields: visualization and visual analytics, geographic information science, database technology, and data mining.<br />We expect the taxonomy to be valuable for analysts and researchers. Analysts will receive guidance in choosing suitable analytic techniques for their data and tasks. Researchers will learn what approaches exist in different fields and compare or relate them to the approaches they are going to undertake.</dcterms:abstract> <dc:creator>Bak, Peter</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19089/2/Andrienko_190896.pdf"/> <dc:contributor>Kisilevich, Slava</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Wrobel, Stefan</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Bak, Peter</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19089"/> <dc:contributor>Andrienko, Nathaliya</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Andrienko, Gennady</dc:creator> <dc:creator>Andrienko, Nathaliya</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Wrobel, Stefan</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-19T13:28:45Z</dc:date> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja