Publikation:

Global Existence Versus Blow-Up for Multidimensional Hyperbolized Compressible Navier–Stokes Equations

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2023

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics (SIAM). 2023, 55(5), pp. 4788-4815. ISSN 0036-1410. eISSN 1095-7154. Available under: doi: 10.1137/22m1497468

Zusammenfassung

We consider the nonisentropic compressible Navier–Stokes equations in two or three space dimensions for which the heat conduction of Fourier’s law is replaced by Cattaneo’s law and the classical Newtonian flow is replaced by a revised Maxwell flow. We show that a physical entropy exists for this new model. For two special cases, we show the global well-posedness of solutions with small initial data and the blow-up of solutions in finite time for a class of large initial data. Moreover, for vanishing relaxation parameters, the solutions (if they exist) are shown to converge to solutions of the classical system.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

compressible Navier–Stokes equations, Cattaneo’s law, Maxwell flow, global solutions, blow-up, relaxation limit

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HU, Yuxi, Reinhard RACKE, 2023. Global Existence Versus Blow-Up for Multidimensional Hyperbolized Compressible Navier–Stokes Equations. In: SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics (SIAM). 2023, 55(5), pp. 4788-4815. ISSN 0036-1410. eISSN 1095-7154. Available under: doi: 10.1137/22m1497468
BibTex
@article{Hu2023-09-26Globa-68995,
  year={2023},
  doi={10.1137/22m1497468},
  title={Global Existence Versus Blow-Up for Multidimensional Hyperbolized Compressible Navier–Stokes Equations},
  number={5},
  volume={55},
  issn={0036-1410},
  journal={SIAM Journal on Mathematical Analysis},
  pages={4788--4815},
  author={Hu, Yuxi and Racke, Reinhard}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68995">
    <dc:contributor>Racke, Reinhard</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68995"/>
    <dc:contributor>Hu, Yuxi</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-10T12:19:45Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Global Existence Versus Blow-Up for Multidimensional Hyperbolized Compressible Navier–Stokes Equations</dcterms:title>
    <dcterms:issued>2023-09-26</dcterms:issued>
    <dcterms:abstract>We consider the nonisentropic compressible Navier–Stokes equations in two or three space dimensions for which the heat conduction of Fourier’s law is replaced by Cattaneo’s law and the classical Newtonian flow is replaced by a revised Maxwell flow. We show that a physical entropy exists for this new model. For two special cases, we show the global well-posedness of solutions with small initial data and the blow-up of solutions in finite time for a class of large initial data. Moreover, for vanishing relaxation parameters, the solutions (if they exist) are shown to converge to solutions of the classical system.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-10T12:19:45Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Racke, Reinhard</dc:creator>
    <dc:creator>Hu, Yuxi</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen