On semiparametric inference for periodically modulated density functions

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2023
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Communications in Statistics: Theory and Methods. Taylor & Francis. 2023, 52(23), pp. 8478-8500. ISSN 0361-0926. eISSN 1532-415X. Available under: doi: 10.1080/03610926.2022.2064501
Zusammenfassung

We consider semiparametric inference for seasonally modulated density functions. Asymptotic results for kernel based estimators and simultaneous confidence bands are derived. The method is illustrated by an analysis of COVID-19 data from six European countries.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Statistics and Probability
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BERAN, Jan, 2023. On semiparametric inference for periodically modulated density functions. In: Communications in Statistics: Theory and Methods. Taylor & Francis. 2023, 52(23), pp. 8478-8500. ISSN 0361-0926. eISSN 1532-415X. Available under: doi: 10.1080/03610926.2022.2064501
BibTex
@article{Beran2023semip-57415,
  year={2023},
  doi={10.1080/03610926.2022.2064501},
  title={On semiparametric inference for periodically modulated density functions},
  number={23},
  volume={52},
  issn={0361-0926},
  journal={Communications in Statistics: Theory and Methods},
  pages={8478--8500},
  author={Beran, Jan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57415">
    <dcterms:title>On semiparametric inference for periodically modulated density functions</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-04T06:51:46Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-04T06:51:46Z</dcterms:available>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57415"/>
    <dcterms:issued>2023</dcterms:issued>
    <dcterms:abstract xml:lang="eng">We consider semiparametric inference for seasonally modulated density functions. Asymptotic results for kernel based estimators and simultaneous confidence bands are derived. The method is illustrated by an analysis of COVID-19 data from six European countries.</dcterms:abstract>
    <dc:creator>Beran, Jan</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen