Efficient Approximation of Channel Capacities
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We propose an iterative method for approximately computing the capacity of discrete memoryless channels, possibly under additional constraints on the input distribution. Based on duality of convex programming, we derive explicit upper and lower bounds for the capacity. The presented method requires O(M 2 N√log N/ε) to provide an estimate of the capacity to within ε, where N and M denote the input and output alphabet size; a single iteration has a complexity O(MN). We also show how to approximately compute the capacity of memoryless channels having a bounded continuous input alphabet and a countable output alphabet under some mild assumptions on the decay rate of the channel's tail. It is shown that discrete-time Poisson channels fall into this problem class. As an example, we compute sharp upper and lower bounds for the capacity of a discrete-time Poisson channel with a peak-power input constraint.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SUTTER, Tobias, David SUTTER, Peyman Mohajerin ESFAHANI, John LYGEROS, 2015. Efficient Approximation of Channel Capacities. In: IEEE Transactions on Information Theory. IEEE. 2015, 61(4), pp. 1649-1666. ISSN 0018-9448. eISSN 1557-9654. Available under: doi: 10.1109/TIT.2015.2401002BibTex
@article{Sutter2015Effic-55748, year={2015}, doi={10.1109/TIT.2015.2401002}, title={Efficient Approximation of Channel Capacities}, number={4}, volume={61}, issn={0018-9448}, journal={IEEE Transactions on Information Theory}, pages={1649--1666}, author={Sutter, Tobias and Sutter, David and Esfahani, Peyman Mohajerin and Lygeros, John} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55748"> <dc:contributor>Lygeros, John</dc:contributor> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Efficient Approximation of Channel Capacities</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T13:49:47Z</dc:date> <dc:creator>Lygeros, John</dc:creator> <dc:creator>Sutter, Tobias</dc:creator> <dc:contributor>Esfahani, Peyman Mohajerin</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Sutter, Tobias</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55748"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Sutter, David</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Esfahani, Peyman Mohajerin</dc:creator> <dcterms:issued>2015</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T13:49:47Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We propose an iterative method for approximately computing the capacity of discrete memoryless channels, possibly under additional constraints on the input distribution. Based on duality of convex programming, we derive explicit upper and lower bounds for the capacity. The presented method requires O(M <sub>2</sub> N√log N/ε) to provide an estimate of the capacity to within ε, where N and M denote the input and output alphabet size; a single iteration has a complexity O(MN). We also show how to approximately compute the capacity of memoryless channels having a bounded continuous input alphabet and a countable output alphabet under some mild assumptions on the decay rate of the channel's tail. It is shown that discrete-time Poisson channels fall into this problem class. As an example, we compute sharp upper and lower bounds for the capacity of a discrete-time Poisson channel with a peak-power input constraint.</dcterms:abstract> <dc:creator>Sutter, David</dc:creator> </rdf:Description> </rdf:RDF>