The News Auditor : Visual Exploration of Clusters of Stories
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In recent years, the quantity of content generated by news agencies and blogs is constantly growing, making it difficult for readers to process and understand this overwhelming amount of data. Online news aggregators present clusters of similar stories in a simple, list-based manner, where the most important article is shown first, while all the other similar articles appear below as hyperlinked headlines. This layout makes the user unaware of the content differences between articles, thus making it very difficult to get a comprehensive picture. Understanding what was changed, how, when and by whom, would lead to new insights about the content distribution over the internet and help in dealing with the news overload problem. We present a visual analytics tool that allows the user to compare the articles that belong to the same story and understand the differences at three levels of detail. Story matrix provides an overview of a document cluster, where the user can identify articles of interest based on their overall similarity and reorder them by different criteria. Structural view shows document thumbnails with highlighted paragraphs of the text that were copied, modified or repositioned by different sources. Finally, Document level view presents two articles side by side to provide full-text comparison. To evaluate our tool, we present two user scenarios applied on a real world data set.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BEHRISCH, Michael, Milos KRSTAJIC, Tobias SCHRECK, Daniel A. KEIM, 2012. The News Auditor : Visual Exploration of Clusters of Stories. EuroVA 2012. Vienna, Austria, 4. Juni 2012 - 5. Juni 2012. In: MATKOVIC, Kresimir, ed., Giuseppe SANTUCCI, ed.. EuroVA 2012 International Workshop on Visual Analytics. Goslar: Eurographics Association, 2012, pp. 61-65. ISBN 978-3-905673-89-0. Available under: doi: 10.2312/PE/EuroVAST/EuroVA12/061-065BibTex
@inproceedings{Behrisch2012Audit-22560, year={2012}, doi={10.2312/PE/EuroVAST/EuroVA12/061-065}, title={The News Auditor : Visual Exploration of Clusters of Stories}, isbn={978-3-905673-89-0}, publisher={Eurographics Association}, address={Goslar}, booktitle={EuroVA 2012 International Workshop on Visual Analytics}, pages={61--65}, editor={Matkovic, Kresimir and Santucci, Giuseppe}, author={Behrisch, Michael and Krstajic, Milos and Schreck, Tobias and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22560"> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Behrisch, Michael</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>The News Auditor : Visual Exploration of Clusters of Stories</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>Behrisch, Michael</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:bibliographicCitation>EuroVA 2012 International Workshop on Visual Analytics : Vienna, Austria June 4 – 5, 2012 / Kresimir Matkovic and Guiseppe Santucci (eds.). - Goslar : Eurographics Association, 2012. - S. 61-65. - ISBN 978-3-905673-89-0</dcterms:bibliographicCitation> <dcterms:issued>2012</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-28T11:11:30Z</dc:date> <dc:creator>Krstajic, Milos</dc:creator> <dc:contributor>Schreck, Tobias</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22560"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-28T11:11:30Z</dcterms:available> <dcterms:abstract xml:lang="eng">In recent years, the quantity of content generated by news agencies and blogs is constantly growing, making it difficult for readers to process and understand this overwhelming amount of data. Online news aggregators present clusters of similar stories in a simple, list-based manner, where the most important article is shown first, while all the other similar articles appear below as hyperlinked headlines. This layout makes the user unaware of the content differences between articles, thus making it very difficult to get a comprehensive picture. Understanding what was changed, how, when and by whom, would lead to new insights about the content distribution over the internet and help in dealing with the news overload problem. We present a visual analytics tool that allows the user to compare the articles that belong to the same story and understand the differences at three levels of detail. Story matrix provides an overview of a document cluster, where the user can identify articles of interest based on their overall similarity and reorder them by different criteria. Structural view shows document thumbnails with highlighted paragraphs of the text that were copied, modified or repositioned by different sources. Finally, Document level view presents two articles side by side to provide full-text comparison. To evaluate our tool, we present two user scenarios applied on a real world data set.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Krstajic, Milos</dc:contributor> </rdf:Description> </rdf:RDF>