The effect of long memory in volatility on location estimation

No Thumbnail Available
Files
There are no files associated with this item.
Date
2008
Authors
Schützner, Martin
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Sankhya ; 70 (2008), 1. - pp. 84-112. - ISSN 0976-8386. - eISSN 0976-8394
Abstract
We consider the question in how far long memory in volatility affects the asymptotic distribution of location estimators. Specifically, we consider Mestimation for models with finite moments. Under symmetry assumptions, the asymptotic distribution turns out to be the same as under independence, even if a nonlinear estimator is used. However, for nonlinear estimators, deviations from these assumptions can imply a slower rate of convergence and hence asymptotic efficiency zero compared to the sample mean. This means that for long-memory volatility models, estimators that are robust with respect to bias, turn out to be extremely sensitive with respect to the variance. Simulations and data examples illustrate the results by comparing the asymptotic behaviour of the sample mean, the median and a Huber estimator with an intermediate tuning parameter.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
M-estimator,long memory,location estimation,Appell polynomials,central limit theorem,Hermite process,volatility
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BERAN, Jan, Martin SCHÜTZNER, 2008. The effect of long memory in volatility on location estimation. In: Sankhya. 70(1), pp. 84-112. ISSN 0976-8386. eISSN 0976-8394
BibTex
@article{Beran2008effec-794,
  year={2008},
  title={The effect of long memory in volatility on location estimation},
  number={1},
  volume={70},
  issn={0976-8386},
  journal={Sankhya},
  pages={84--112},
  author={Beran, Jan and Schützner, Martin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/794">
    <dcterms:title>The effect of long memory in volatility on location estimation</dcterms:title>
    <dc:creator>Beran, Jan</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:54Z</dcterms:available>
    <dc:contributor>Schützner, Martin</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2008</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Schützner, Martin</dc:creator>
    <dcterms:bibliographicCitation>Sankhya, Ser. B ; 70 (2008), 1. - S. 84-112</dcterms:bibliographicCitation>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">We consider the question in how far long memory in volatility affects the asymptotic distribution of location estimators. Specifically, we consider Mestimation for models with finite moments. Under symmetry assumptions, the asymptotic distribution turns out to be the same as under independence, even if a nonlinear estimator is used. However, for nonlinear estimators, deviations from these assumptions can imply a slower rate of convergence and hence asymptotic efficiency zero compared to the sample mean. This means that for long-memory volatility models, estimators that are robust with respect to bias, turn out to be extremely sensitive with respect to the variance. Simulations and data examples illustrate the results by comparing the asymptotic behaviour of the sample mean, the median and a Huber estimator with an intermediate tuning parameter.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:54Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Beran, Jan</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/794"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed