Publikation:

The effect of long memory in volatility on location estimation

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2008

Autor:innen

Schützner, Martin

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Sankhya. 2008, 70(1), pp. 84-112. ISSN 0976-8386. eISSN 0976-8394

Zusammenfassung

We consider the question in how far long memory in volatility affects the asymptotic distribution of location estimators. Specifically, we consider Mestimation for models with finite moments. Under symmetry assumptions, the asymptotic distribution turns out to be the same as under independence, even if a nonlinear estimator is used. However, for nonlinear estimators, deviations from these assumptions can imply a slower rate of convergence and hence asymptotic efficiency zero compared to the sample mean. This means that for long-memory volatility models, estimators that are robust with respect to bias, turn out to be extremely sensitive with respect to the variance. Simulations and data examples illustrate the results by comparing the asymptotic behaviour of the sample mean, the median and a Huber estimator with an intermediate tuning parameter.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

M-estimator, long memory, location estimation, Appell polynomials, central limit theorem, Hermite process, volatility

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERAN, Jan, Martin SCHÜTZNER, 2008. The effect of long memory in volatility on location estimation. In: Sankhya. 2008, 70(1), pp. 84-112. ISSN 0976-8386. eISSN 0976-8394
BibTex
@article{Beran2008effec-794,
  year={2008},
  title={The effect of long memory in volatility on location estimation},
  number={1},
  volume={70},
  issn={0976-8386},
  journal={Sankhya},
  pages={84--112},
  author={Beran, Jan and Schützner, Martin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/794">
    <dcterms:title>The effect of long memory in volatility on location estimation</dcterms:title>
    <dc:creator>Beran, Jan</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:54Z</dcterms:available>
    <dc:contributor>Schützner, Martin</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2008</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Schützner, Martin</dc:creator>
    <dcterms:bibliographicCitation>Sankhya, Ser. B ; 70 (2008), 1. - S. 84-112</dcterms:bibliographicCitation>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">We consider the question in how far long memory in volatility affects the asymptotic distribution of location estimators. Specifically, we consider Mestimation for models with finite moments. Under symmetry assumptions, the asymptotic distribution turns out to be the same as under independence, even if a nonlinear estimator is used. However, for nonlinear estimators, deviations from these assumptions can imply a slower rate of convergence and hence asymptotic efficiency zero compared to the sample mean. This means that for long-memory volatility models, estimators that are robust with respect to bias, turn out to be extremely sensitive with respect to the variance. Simulations and data examples illustrate the results by comparing the asymptotic behaviour of the sample mean, the median and a Huber estimator with an intermediate tuning parameter.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:54Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Beran, Jan</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/794"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen