Identifying context and cause in small-N settings : a comparative multilevel analysis
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Qualitative small-N comparisons face the challenge to detect context-bound causality under conditions of limited empirical diversity. Rather than treating context as a causal factor, we test the usefulness of the novel method of comparative multilevel analysis (CMA) to identify and understand the role of context as a contingent necessary condition that enables a causal relationship to unfold. Combining CMA with pairwise comparisons, we assess how organ donation policies in Switzerland and Spain affect relatives’ refusal rates in a small-N setting exhibiting multiple contextual levels. To tackle limited diversity systematically, we suggest to refine the CMA methodology by accounting for several contexts and referring to higher-order constructs. Applying CMA with these refinements, we find voluntary information measures only affect refusal rates in contexts of a credible state explicitly supporting organ donation. The fact that CMA can easily be combined with other analytical and conceptual approaches makes it an effective technique to identify contextual effects in small-N research.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
THOMANN, Eva, Anita MANATSCHAL, 2016. Identifying context and cause in small-N settings : a comparative multilevel analysis. In: Policy Sciences. Springer. 2016, 49(3), pp. 335-348. ISSN 0032-2687. eISSN 1573-0891. Available under: doi: 10.1007/s11077-015-9233-xBibTex
@article{Thomann2016Ident-52237, year={2016}, doi={10.1007/s11077-015-9233-x}, title={Identifying context and cause in small-N settings : a comparative multilevel analysis}, number={3}, volume={49}, issn={0032-2687}, journal={Policy Sciences}, pages={335--348}, author={Thomann, Eva and Manatschal, Anita}, note={Erratum: https://doi.org/10.1007/s11077-016-9241-5} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52237"> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-22T13:57:39Z</dc:date> <dcterms:title>Identifying context and cause in small-N settings : a comparative multilevel analysis</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52237"/> <dcterms:abstract xml:lang="eng">Qualitative small-N comparisons face the challenge to detect context-bound causality under conditions of limited empirical diversity. Rather than treating context as a causal factor, we test the usefulness of the novel method of comparative multilevel analysis (CMA) to identify and understand the role of context as a contingent necessary condition that enables a causal relationship to unfold. Combining CMA with pairwise comparisons, we assess how organ donation policies in Switzerland and Spain affect relatives’ refusal rates in a small-N setting exhibiting multiple contextual levels. To tackle limited diversity systematically, we suggest to refine the CMA methodology by accounting for several contexts and referring to higher-order constructs. Applying CMA with these refinements, we find voluntary information measures only affect refusal rates in contexts of a credible state explicitly supporting organ donation. The fact that CMA can easily be combined with other analytical and conceptual approaches makes it an effective technique to identify contextual effects in small-N research.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Thomann, Eva</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Thomann, Eva</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2016</dcterms:issued> <dc:creator>Manatschal, Anita</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-22T13:57:39Z</dcterms:available> <dc:contributor>Manatschal, Anita</dc:contributor> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>