TimeSeriesPaths : Projection-Based Explorative Analysis of Multivariate Time Series Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The analysis of time-dependent data is an important problem in many application domains, and interactive visualization of time-series data can help in understanding patterns in large time series data. Many effective approaches already exist for visual analysis of univariate time series supporting tasks such as assessment of data quality, detection of outliers, or identification of periodically or frequently occurring patterns. However, much fewer approaches exist which support multivariate time series. The existence of multiple values per time stamp makes the analysis task per se harder, and existing visualization techniques often do not scale well. We introduce an approach for visual analysis of large multivariate time-dependent data, based on the idea of projecting multivariate measurements to a 2D display, visualizing the time dimension by trajectories. We use visual data aggregation metaphors based on grouping of similar data elements to scale with multivariate time series. Aggregation procedures can either be based on statistical properties of the data or on data clustering routines. Appropriately defined user controls allow to navigate and explore the data and interactively steer the parameters of the data aggregation to enhance data analysis. We present an implementation of our approach and apply it on a comprehensive data set from the field of earth observation, demonstrating the applicability and usefulness of our approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERNARD, Jürgen, Nils WILHELM, Maximilian SCHERER, Thorsten MAY, Tobias SCHRECK, 2012. TimeSeriesPaths : Projection-Based Explorative Analysis of Multivariate Time Series Data. In: Journal of WSCG. 2012, pp. 97-106. ISSN 1213-6972. eISSN 1213-6964BibTex
@inproceedings{Bernard2012TimeS-22701, year={2012}, title={TimeSeriesPaths : Projection-Based Explorative Analysis of Multivariate Time Series Data}, issn={1213-6972}, booktitle={Journal of WSCG}, pages={97--106}, author={Bernard, Jürgen and Wilhelm, Nils and Scherer, Maximilian and May, Thorsten and Schreck, Tobias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22701"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22701/2/Schreck_227012.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22701"/> <dc:creator>Bernard, Jürgen</dc:creator> <dc:contributor>Scherer, Maximilian</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-09T09:07:07Z</dc:date> <dc:creator>Schreck, Tobias</dc:creator> <dc:contributor>Wilhelm, Nils</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-09T09:07:07Z</dcterms:available> <dcterms:bibliographicCitation>Journal of WSCG ; 20 (2012), 2. - S. 97-106</dcterms:bibliographicCitation> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">The analysis of time-dependent data is an important problem in many application domains, and interactive visualization of time-series data can help in understanding patterns in large time series data. Many effective approaches already exist for visual analysis of univariate time series supporting tasks such as assessment of data quality, detection of outliers, or identification of periodically or frequently occurring patterns. However, much fewer approaches exist which support multivariate time series. The existence of multiple values per time stamp makes the analysis task per se harder, and existing visualization techniques often do not scale well. We introduce an approach for visual analysis of large multivariate time-dependent data, based on the idea of projecting multivariate measurements to a 2D display, visualizing the time dimension by trajectories. We use visual data aggregation metaphors based on grouping of similar data elements to scale with multivariate time series. Aggregation procedures can either be based on statistical properties of the data or on data clustering routines. Appropriately defined user controls allow to navigate and explore the data and interactively steer the parameters of the data aggregation to enhance data analysis. We present an implementation of our approach and apply it on a comprehensive data set from the field of earth observation, demonstrating the applicability and usefulness of our approach.</dcterms:abstract> <dc:creator>May, Thorsten</dc:creator> <dc:contributor>May, Thorsten</dc:contributor> <dcterms:issued>2012</dcterms:issued> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Bernard, Jürgen</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22701/2/Schreck_227012.pdf"/> <dc:contributor>Schreck, Tobias</dc:contributor> <dcterms:title>TimeSeriesPaths : Projection-Based Explorative Analysis of Multivariate Time Series Data</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Wilhelm, Nils</dc:creator> <dc:creator>Scherer, Maximilian</dc:creator> </rdf:Description> </rdf:RDF>