TimeSeriesPaths : Projection-Based Explorative Analysis of Multivariate Time Series Data

Loading...
Thumbnail Image
Date
2012
Authors
Bernard, Jürgen
Wilhelm, Nils
Scherer, Maximilian
May, Thorsten
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published in
Journal of WSCG20 (2012), 2. - pp. 97-106. - ISSN 1213-6972. - eISSN 1213-6964
Abstract
The analysis of time-dependent data is an important problem in many application domains, and interactive visualization of time-series data can help in understanding patterns in large time series data. Many effective approaches already exist for visual analysis of univariate time series supporting tasks such as assessment of data quality, detection of outliers, or identification of periodically or frequently occurring patterns. However, much fewer approaches exist which support multivariate time series. The existence of multiple values per time stamp makes the analysis task per se harder, and existing visualization techniques often do not scale well. We introduce an approach for visual analysis of large multivariate time-dependent data, based on the idea of projecting multivariate measurements to a 2D display, visualizing the time dimension by trajectories. We use visual data aggregation metaphors based on grouping of similar data elements to scale with multivariate time series. Aggregation procedures can either be based on statistical properties of the data or on data clustering routines. Appropriately defined user controls allow to navigate and explore the data and interactively steer the parameters of the data aggregation to enhance data analysis. We present an implementation of our approach and apply it on a comprehensive data set from the field of earth observation, demonstrating the applicability and usefulness of our approach.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BERNARD, Jürgen, Nils WILHELM, Maximilian SCHERER, Thorsten MAY, Tobias SCHRECK, 2012. TimeSeriesPaths : Projection-Based Explorative Analysis of Multivariate Time Series Data. In: Journal of WSCG. 20(2), pp. 97-106. ISSN 1213-6972. eISSN 1213-6964
BibTex
@inproceedings{Bernard2012TimeS-22701,
  year={2012},
  title={TimeSeriesPaths : Projection-Based Explorative Analysis of Multivariate Time Series Data},
  issn={1213-6972},
  booktitle={Journal of WSCG},
  pages={97--106},
  author={Bernard, Jürgen and Wilhelm, Nils and Scherer, Maximilian and May, Thorsten and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22701">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22701/2/Schreck_227012.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22701"/>
    <dc:creator>Bernard, Jürgen</dc:creator>
    <dc:contributor>Scherer, Maximilian</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-09T09:07:07Z</dc:date>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Wilhelm, Nils</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-09T09:07:07Z</dcterms:available>
    <dcterms:bibliographicCitation>Journal of WSCG ; 20 (2012), 2. - S. 97-106</dcterms:bibliographicCitation>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">The analysis of time-dependent data is an important problem in many application domains, and interactive visualization of time-series data can help in understanding patterns in large time series data. Many effective approaches already exist for visual analysis of univariate time series supporting tasks such as assessment of data quality, detection of outliers, or identification of periodically or frequently occurring patterns. However, much fewer approaches exist which support multivariate time series. The existence of multiple values per time stamp makes the analysis task per se harder, and existing visualization techniques often do not scale well. We introduce an approach for visual analysis of large multivariate time-dependent data, based on the idea of projecting multivariate measurements to a 2D display, visualizing the time dimension by trajectories. We use visual data aggregation metaphors based on grouping of similar data elements to scale with multivariate time series. Aggregation procedures can either be based on statistical properties of the data or on data clustering routines. Appropriately defined user controls allow to navigate and explore the data and interactively steer the parameters of the data aggregation to enhance data analysis. We present an implementation of our approach and apply it on a comprehensive data set from the field of earth observation, demonstrating the applicability and usefulness of our approach.</dcterms:abstract>
    <dc:creator>May, Thorsten</dc:creator>
    <dc:contributor>May, Thorsten</dc:contributor>
    <dcterms:issued>2012</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Bernard, Jürgen</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22701/2/Schreck_227012.pdf"/>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:title>TimeSeriesPaths : Projection-Based Explorative Analysis of Multivariate Time Series Data</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Wilhelm, Nils</dc:creator>
    <dc:creator>Scherer, Maximilian</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed