Publikation:

Long-Memory and the Sea Level-Temperature Relationship : A Fractional Cointegration Approach

Lade...
Vorschaubild

Dateien

Ventosa_0-285245.pdf
Ventosa_0-285245.pdfGröße: 622.41 KBDownloads: 228

Datum

2014

Autor:innen

Ventosa-Santaulària, Daniel
Heres, David R.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

PLoS ONE. 2014, 9(11), e113439. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0113439

Zusammenfassung

Through thermal expansion of oceans and melting of land-based ice, global warming is very likely contributing to the sea level rise observed during the 20th century. The amount by which further increases in global average temperature could affect sea level is only known with large uncertainties due to the limited capacity of physics-based models to predict sea levels from global surface temperatures. Semi-empirical approaches have been implemented to estimate the statistical relationship between these two variables providing an alternative measure on which to base potentially disrupting impacts on coastal communities and ecosystems. However, only a few of these semi-empirical applications had addressed the spurious inference that is likely to be drawn when one nonstationary process is regressed on another. Furthermore, it has been shown that spurious effects are not eliminated by stationary processes when these possess strong long memory. Our results indicate that both global temperature and sea level indeed present the characteristics of long memory processes. Nevertheless, we find that these variables are fractionally cointegrated when sea-ice extent is incorporated as an instrumental variable for temperature which in our estimations has a statistically significant positive impact on global sea level.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690VENTOSA-SANTAULÀRIA, Daniel, David R. HERES, L. Catalina MARTÍNEZ-HERNÁNDEZ, 2014. Long-Memory and the Sea Level-Temperature Relationship : A Fractional Cointegration Approach. In: PLoS ONE. 2014, 9(11), e113439. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0113439
BibTex
@article{VentosaSantaularia2014LongM-30631,
  year={2014},
  doi={10.1371/journal.pone.0113439},
  title={Long-Memory and the Sea Level-Temperature Relationship : A Fractional Cointegration Approach},
  number={11},
  volume={9},
  journal={PLoS ONE},
  author={Ventosa-Santaulària, Daniel and Heres, David R. and Martínez-Hernández, L. Catalina},
  note={Article Number: e113439}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30631">
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30631/3/Ventosa_0-285245.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30631/3/Ventosa_0-285245.pdf"/>
    <dc:contributor>Martínez-Hernández, L. Catalina</dc:contributor>
    <dc:contributor>Ventosa-Santaulària, Daniel</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>Long-Memory and the Sea Level-Temperature Relationship : A Fractional Cointegration Approach</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Martínez-Hernández, L. Catalina</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-04-01T06:08:17Z</dcterms:available>
    <dc:contributor>Heres, David R.</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30631"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Heres, David R.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2014</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-04-01T06:08:17Z</dc:date>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:abstract xml:lang="eng">Through thermal expansion of oceans and melting of land-based ice, global warming is very likely contributing to the sea level rise observed during the 20th century. The amount by which further increases in global average temperature could affect sea level is only known with large uncertainties due to the limited capacity of physics-based models to predict sea levels from global surface temperatures. Semi-empirical approaches have been implemented to estimate the statistical relationship between these two variables providing an alternative measure on which to base potentially disrupting impacts on coastal communities and ecosystems. However, only a few of these semi-empirical applications had addressed the spurious inference that is likely to be drawn when one nonstationary process is regressed on another. Furthermore, it has been shown that spurious effects are not eliminated by stationary processes when these possess strong long memory. Our results indicate that both global temperature and sea level indeed present the characteristics of long memory processes. Nevertheless, we find that these variables are fractionally cointegrated when sea-ice extent is incorporated as an instrumental variable for temperature which in our estimations has a statistically significant positive impact on global sea level.</dcterms:abstract>
    <dc:creator>Ventosa-Santaulària, Daniel</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen