High-fidelity quantum gates in Si/SiGe double quantum dots
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Motivated by recent experiments of Zajac et al. [Science 359, 439 (2018)], we theoretically describe high-fidelity two-qubit gates using the exchange interaction between the spins in neighboring quantum dots subject to a magnetic field gradient. We use a combination of analytical calculations and numerical simulations to provide the optimal pulse sequences and parameter settings for the gate operation. We present a synchronization method which avoids detrimental spin flips during the gate operation and provide details about phase mismatches accumulated during the two-qubit gates which occur due to residual exchange interaction, nonadiabatic pulses, and off-resonant driving. By adjusting the gate times, synchronizing the resonant and off-resonant transitions, and compensating these phase mismatches by phase control, the overall gate fidelity can be increased significantly.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RUSS, Maximilian, David M. ZAJAC, Anthony J. SIGILLITO, Felix BORJANS, Jacob M. TAYLOR, Jason R. PETTA, Guido BURKARD, 2018. High-fidelity quantum gates in Si/SiGe double quantum dots. In: Physical Review B. 2018, 97(8), 085421. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.97.085421BibTex
@article{Russ2018Highf-41584, year={2018}, doi={10.1103/PhysRevB.97.085421}, title={High-fidelity quantum gates in Si/SiGe double quantum dots}, number={8}, volume={97}, issn={2469-9950}, journal={Physical Review B}, author={Russ, Maximilian and Zajac, David M. and Sigillito, Anthony J. and Borjans, Felix and Taylor, Jacob M. and Petta, Jason R. and Burkard, Guido}, note={Article Number: 085421} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41584"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Borjans, Felix</dc:creator> <dcterms:title>High-fidelity quantum gates in Si/SiGe double quantum dots</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-23T14:03:59Z</dc:date> <dc:creator>Zajac, David M.</dc:creator> <dc:creator>Petta, Jason R.</dc:creator> <dc:contributor>Borjans, Felix</dc:contributor> <dc:creator>Sigillito, Anthony J.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Burkard, Guido</dc:creator> <dc:contributor>Russ, Maximilian</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41584"/> <dc:contributor>Petta, Jason R.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-23T14:03:59Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Zajac, David M.</dc:contributor> <dc:contributor>Taylor, Jacob M.</dc:contributor> <dc:contributor>Sigillito, Anthony J.</dc:contributor> <dc:contributor>Burkard, Guido</dc:contributor> <dc:language>eng</dc:language> <dcterms:issued>2018</dcterms:issued> <dcterms:abstract xml:lang="eng">Motivated by recent experiments of Zajac et al. [Science 359, 439 (2018)], we theoretically describe high-fidelity two-qubit gates using the exchange interaction between the spins in neighboring quantum dots subject to a magnetic field gradient. We use a combination of analytical calculations and numerical simulations to provide the optimal pulse sequences and parameter settings for the gate operation. We present a synchronization method which avoids detrimental spin flips during the gate operation and provide details about phase mismatches accumulated during the two-qubit gates which occur due to residual exchange interaction, nonadiabatic pulses, and off-resonant driving. By adjusting the gate times, synchronizing the resonant and off-resonant transitions, and compensating these phase mismatches by phase control, the overall gate fidelity can be increased significantly.</dcterms:abstract> <dc:creator>Taylor, Jacob M.</dc:creator> <dc:creator>Russ, Maximilian</dc:creator> </rdf:Description> </rdf:RDF>