Foliar ontogeny in Gymnostoma deplancheanum and its evolutionary and ecological significance for scleromorphy and xeromorphy in Casuarinaceae (Fagales)
Foliar ontogeny in Gymnostoma deplancheanum and its evolutionary and ecological significance for scleromorphy and xeromorphy in Casuarinaceae (Fagales)
Loading...
Date
2019
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Trees ; 33 (2019), 3. - pp. 653-668. - ISSN 0931-1890. - eISSN 1432-2285
Abstract
Key message
The phylogenetically basal genus of the Casuarinaceae, Gymnostoma, from relatively mesic environments, shows morphological and anatomical structures that are precursors to xeromorphic modifications in the derived genera Casuarina and Allocasuarina.
Gymnostoma is the basal genus of the Casuarinaceae with a long evolutionary history and a morphology that has changed little over many millions of years. From a wide distribution in the Tertiary of the southern hemisphere, it is now restricted to islands in the Pacific Ocean, the Malesian region and one small area of northeastern Queensland where it occurs in mesic climates, often on poor soils. The unique vegetative morphology it shares with other more derived genera in the family appears to be xeromorphic. Its distribution combined with the fossil evidence that early Tertiary Gymnostoma occurred with other taxa whose morphology indicated they grew in mesic environments implies that the reduction in the photosynthetic organs was not specifically related to growing in xeric environments. It may be related to evolutionary adaptation to growing on nutrient poor substrates that may also suffer from seasonal water deficit. The foliage reduction then served as a pre-adaptation for derived species to help them cope with the aridity that developed on the Australian continent through the later part of the Tertiary. The fusion of the leaves to the stem to form phyllichnia was a precursor which enabled the development of specific adaptations in the derived genera Casuarina and Allocasuarina to improve water conservation, such as stomata restricted to furrows between the phyllichnia and proliferation of structural sclerenchyma that helps prevent cell collapse under drought conditions.
The phylogenetically basal genus of the Casuarinaceae, Gymnostoma, from relatively mesic environments, shows morphological and anatomical structures that are precursors to xeromorphic modifications in the derived genera Casuarina and Allocasuarina.
Gymnostoma is the basal genus of the Casuarinaceae with a long evolutionary history and a morphology that has changed little over many millions of years. From a wide distribution in the Tertiary of the southern hemisphere, it is now restricted to islands in the Pacific Ocean, the Malesian region and one small area of northeastern Queensland where it occurs in mesic climates, often on poor soils. The unique vegetative morphology it shares with other more derived genera in the family appears to be xeromorphic. Its distribution combined with the fossil evidence that early Tertiary Gymnostoma occurred with other taxa whose morphology indicated they grew in mesic environments implies that the reduction in the photosynthetic organs was not specifically related to growing in xeric environments. It may be related to evolutionary adaptation to growing on nutrient poor substrates that may also suffer from seasonal water deficit. The foliage reduction then served as a pre-adaptation for derived species to help them cope with the aridity that developed on the Australian continent through the later part of the Tertiary. The fusion of the leaves to the stem to form phyllichnia was a precursor which enabled the development of specific adaptations in the derived genera Casuarina and Allocasuarina to improve water conservation, such as stomata restricted to furrows between the phyllichnia and proliferation of structural sclerenchyma that helps prevent cell collapse under drought conditions.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Gymnostoma deplancheanum, Leaf reduction, Morphology, Anatomy, Scleromorphy, Xeromorphy
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
DÖRKEN, Veit, Phil G. LADD, Robert F. PARSONS, 2019. Foliar ontogeny in Gymnostoma deplancheanum and its evolutionary and ecological significance for scleromorphy and xeromorphy in Casuarinaceae (Fagales). In: Trees. 33(3), pp. 653-668. ISSN 0931-1890. eISSN 1432-2285. Available under: doi: 10.1007/s00468-018-1806-9BibTex
@article{Dorken2019-06Folia-45979, year={2019}, doi={10.1007/s00468-018-1806-9}, title={Foliar ontogeny in Gymnostoma deplancheanum and its evolutionary and ecological significance for scleromorphy and xeromorphy in Casuarinaceae (Fagales)}, number={3}, volume={33}, issn={0931-1890}, journal={Trees}, pages={653--668}, author={Dörken, Veit and Ladd, Phil G. and Parsons, Robert F.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45979"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45979/1/Doerken_2-aok10beqd1ne3.pdf"/> <dc:contributor>Ladd, Phil G.</dc:contributor> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Key message<br />The phylogenetically basal genus of the Casuarinaceae, Gymnostoma, from relatively mesic environments, shows morphological and anatomical structures that are precursors to xeromorphic modifications in the derived genera Casuarina and Allocasuarina.<br /><br />Gymnostoma is the basal genus of the Casuarinaceae with a long evolutionary history and a morphology that has changed little over many millions of years. From a wide distribution in the Tertiary of the southern hemisphere, it is now restricted to islands in the Pacific Ocean, the Malesian region and one small area of northeastern Queensland where it occurs in mesic climates, often on poor soils. The unique vegetative morphology it shares with other more derived genera in the family appears to be xeromorphic. Its distribution combined with the fossil evidence that early Tertiary Gymnostoma occurred with other taxa whose morphology indicated they grew in mesic environments implies that the reduction in the photosynthetic organs was not specifically related to growing in xeric environments. It may be related to evolutionary adaptation to growing on nutrient poor substrates that may also suffer from seasonal water deficit. The foliage reduction then served as a pre-adaptation for derived species to help them cope with the aridity that developed on the Australian continent through the later part of the Tertiary. The fusion of the leaves to the stem to form phyllichnia was a precursor which enabled the development of specific adaptations in the derived genera Casuarina and Allocasuarina to improve water conservation, such as stomata restricted to furrows between the phyllichnia and proliferation of structural sclerenchyma that helps prevent cell collapse under drought conditions.</dcterms:abstract> <dcterms:issued>2019-06</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-06-12T06:56:05Z</dcterms:available> <dcterms:title>Foliar ontogeny in Gymnostoma deplancheanum and its evolutionary and ecological significance for scleromorphy and xeromorphy in Casuarinaceae (Fagales)</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-06-12T06:56:05Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Parsons, Robert F.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45979"/> <dc:creator>Parsons, Robert F.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45979/1/Doerken_2-aok10beqd1ne3.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Ladd, Phil G.</dc:creator> <dc:contributor>Dörken, Veit</dc:contributor> <dc:creator>Dörken, Veit</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes