Publikation: Scale-induced closure for approximations of kinetic equations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The order-of-magnitude method proposed by Struchtrup (Phys. Fluids 16(11):3921–3934, 2004) is a new closure procedure for the infinite moment hierarchy in kinetic theory of gases, taking into account the scaling of the moments. The scaling parameter is the Knudsen number Kn, which is the mean free path of a particle divided by the system size.
In this paper, we generalize the order-of-magnitude method and derive a formal theory of scale-induced closures on the level of the kinetic equation. Generally, different orders of magnitude appear through balancing the stiff production term of order 1/Kn with the advection part of the kinetic equation. A cascade of scales is then induced by different powers of Kn.
The new closure produces a moment distribution function that respects the scaling of a Chapman-Enskog expansion. The collision operator induces a decomposition of the non-equilibrium part of the distribution function in terms of the Knudsen number.
The first iteration of the new closure can be shown to be of second-order in Kn under moderate conditions on the collision operator, to be L 2-stable and to possess an entropy law. The derivation of higher order approximations is also possible. We illustrate the features of this approach in the framework of a 16 discrete velocities model.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KAUF, Peter, Manuel TORRILHON, Michael JUNK, 2010. Scale-induced closure for approximations of kinetic equations. In: Journal of Statistical Physics. 2010, 141(5), pp. 848-888. ISSN 0022-4715. Available under: doi: 10.1007/s10955-010-0073-yBibTex
@article{Kauf2010Scale-12749, year={2010}, doi={10.1007/s10955-010-0073-y}, title={Scale-induced closure for approximations of kinetic equations}, number={5}, volume={141}, issn={0022-4715}, journal={Journal of Statistical Physics}, pages={848--888}, author={Kauf, Peter and Torrilhon, Manuel and Junk, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12749"> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Torrilhon, Manuel</dc:creator> <dc:contributor>Junk, Michael</dc:contributor> <dcterms:title>Scale-induced closure for approximations of kinetic equations</dcterms:title> <dcterms:bibliographicCitation>Publ. in: Journal of statistical physics 141 (2010), 5, pp. 848-888</dcterms:bibliographicCitation> <dcterms:issued>2010</dcterms:issued> <dc:contributor>Torrilhon, Manuel</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-06T14:21:08Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12749"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">The order-of-magnitude method proposed by Struchtrup (Phys. Fluids 16(11):3921–3934, 2004) is a new closure procedure for the infinite moment hierarchy in kinetic theory of gases, taking into account the scaling of the moments. The scaling parameter is the Knudsen number Kn, which is the mean free path of a particle divided by the system size.<br />In this paper, we generalize the order-of-magnitude method and derive a formal theory of scale-induced closures on the level of the kinetic equation. Generally, different orders of magnitude appear through balancing the stiff production term of order 1/Kn with the advection part of the kinetic equation. A cascade of scales is then induced by different powers of Kn.<br />The new closure produces a moment distribution function that respects the scaling of a Chapman-Enskog expansion. The collision operator induces a decomposition of the non-equilibrium part of the distribution function in terms of the Knudsen number.<br />The first iteration of the new closure can be shown to be of second-order in Kn under moderate conditions on the collision operator, to be L 2-stable and to possess an entropy law. The derivation of higher order approximations is also possible. We illustrate the features of this approach in the framework of a 16 discrete velocities model.</dcterms:abstract> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Junk, Michael</dc:creator> <dc:contributor>Kauf, Peter</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-06T14:21:08Z</dcterms:available> <dc:creator>Kauf, Peter</dc:creator> </rdf:Description> </rdf:RDF>