Artificial intelligence (AI) : it’s the end of the tox as we know it (and I feel fine)*

Lade...
Vorschaubild
Dateien
Kleinstreuer_2-akctr6f4cpdn3.pdf
Kleinstreuer_2-akctr6f4cpdn3.pdfGröße: 2.58 MBDownloads: 2
Datum
2024
Autor:innen
Kleinstreuer, Nicole
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
European Union (EU): 963845
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Archives of Toxicology. Springer. 2024, 98(3), S. 735-754. ISSN 0340-5761. eISSN 1432-0738. Verfügbar unter: doi: 10.1007/s00204-023-03666-2
Zusammenfassung

The rapid progress of AI impacts diverse scientific disciplines, including toxicology, and has the potential to transform chemical safety evaluation. Toxicology has evolved from an empirical science focused on observing apical outcomes of chemical exposure, to a data-rich field ripe for AI integration. The volume, variety and velocity of toxicological data from legacy studies, literature, high-throughput assays, sensor technologies and omics approaches create opportunities but also complexities that AI can help address. In particular, machine learning is well suited to handle and integrate large, heterogeneous datasets that are both structured and unstructured—a key challenge in modern toxicology. AI methods like deep neural networks, large language models, and natural language processing have successfully predicted toxicity endpoints, analyzed high-throughput data, extracted facts from literature, and generated synthetic data. Beyond automating data capture, analysis, and prediction, AI techniques show promise for accelerating quantitative risk assessment by providing probabilistic outputs to capture uncertainties. AI also enables explanation methods to unravel mechanisms and increase trust in modeled predictions. However, issues like model interpretability, data biases, and transparency currently limit regulatory endorsement of AI. Multidisciplinary collaboration is needed to ensure development of interpretable, robust, and human-centered AI systems. Rather than just automating human tasks at scale, transformative AI can catalyze innovation in how evidence is gathered, data are generated, hypotheses are formed and tested, and tasks are performed to usher new paradigms in chemical safety assessment. Used judiciously, AI has immense potential to advance toxicology into a more predictive, mechanism-based, and evidence-integrated scientific discipline to better safeguard human and environmental wellbeing across diverse populations.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KLEINSTREUER, Nicole, Thomas HARTUNG, 2024. Artificial intelligence (AI) : it’s the end of the tox as we know it (and I feel fine)*. In: Archives of Toxicology. Springer. 2024, 98(3), S. 735-754. ISSN 0340-5761. eISSN 1432-0738. Verfügbar unter: doi: 10.1007/s00204-023-03666-2
BibTex
@article{Kleinstreuer2024-01-20Artif-69211,
  year={2024},
  doi={10.1007/s00204-023-03666-2},
  title={Artificial intelligence (AI) : it’s the end of the tox as we know it (and I feel fine)*},
  number={3},
  volume={98},
  issn={0340-5761},
  journal={Archives of Toxicology},
  pages={735--754},
  author={Kleinstreuer, Nicole and Hartung, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69211">
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:issued>2024-01-20</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-31T09:22:02Z</dc:date>
    <dc:contributor>Kleinstreuer, Nicole</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69211/1/Kleinstreuer_2-akctr6f4cpdn3.pdf"/>
    <dcterms:title>Artificial intelligence (AI) : it’s the end of the tox as we know it (and I feel fine)*</dcterms:title>
    <dc:creator>Kleinstreuer, Nicole</dc:creator>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69211"/>
    <dcterms:abstract>The rapid progress of AI impacts diverse scientific disciplines, including toxicology, and has the potential to transform chemical safety evaluation. Toxicology has evolved from an empirical science focused on observing apical outcomes of chemical exposure, to a data-rich field ripe for AI integration. The volume, variety and velocity of toxicological data from legacy studies, literature, high-throughput assays, sensor technologies and omics approaches create opportunities but also complexities that AI can help address. In particular, machine learning is well suited to handle and integrate large, heterogeneous datasets that are both structured and unstructured—a key challenge in modern toxicology. AI methods like deep neural networks, large language models, and natural language processing have successfully predicted toxicity endpoints, analyzed high-throughput data, extracted facts from literature, and generated synthetic data. Beyond automating data capture, analysis, and prediction, AI techniques show promise for accelerating quantitative risk assessment by providing probabilistic outputs to capture uncertainties. AI also enables explanation methods to unravel mechanisms and increase trust in modeled predictions. However, issues like model interpretability, data biases, and transparency currently limit regulatory endorsement of AI. Multidisciplinary collaboration is needed to ensure development of interpretable, robust, and human-centered AI systems. Rather than just automating human tasks at scale, transformative AI can catalyze innovation in how evidence is gathered, data are generated, hypotheses are formed and tested, and tasks are performed to usher new paradigms in chemical safety assessment. Used judiciously, AI has immense potential to advance toxicology into a more predictive, mechanism-based, and evidence-integrated scientific discipline to better safeguard human and environmental wellbeing across diverse populations.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-31T09:22:02Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69211/1/Kleinstreuer_2-akctr6f4cpdn3.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Hartung, Thomas</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen