Visual Sentiment Analysis of RSS News Feeds Featuring the US Presidential Election in 2008

Lade...
Vorschaubild
Dateien
vissw2009.pdf
vissw2009.pdfGröße: 2.71 MBDownloads: 2471
Datum
2009
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Visual Interfaces to the Social and the Semantic Web (VISSW 2009), Sanibel Island, Florida, 8th February 2009. 2009
Zusammenfassung

The technology behind RSS feeds offers great possibilities to retrieve more news items than ever. In contrast to these technical developments, human capabilities to read all these news items have not increased likewise. To bridge this gap, this paper presents a visual analytics tool for conducting semi-automatic sentiment analysis of large news feeds. While the tool automatically retrieves and analyzes RSS feeds with respect to positive and negative opinion words, the more demanding news analysis of finding trends, spotting peculiarities and putting events into context is left to the human expert. For a solid analysis the news similarity filter enables highlighting of similar or redundant news items. A case study about news related to the US presidential election in 2008 shows how the visual interface of the tool empowers the analyst to draw meaningful conclusions without the effort of reading all news postings.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Opinion mining, sentiment analysis, information visualization, visual analytics
Konferenz
VISSW, 8. Feb. 2009, Sanibel Island, Florida
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690WANNER, Franz, Christian ROHRDANTZ, Florian MANSMANN, Daniela OELKE, Daniel A. KEIM, 2009. Visual Sentiment Analysis of RSS News Feeds Featuring the US Presidential Election in 2008. VISSW. Sanibel Island, Florida, 8. Feb. 2009. In: Visual Interfaces to the Social and the Semantic Web (VISSW 2009), Sanibel Island, Florida, 8th February 2009. 2009
BibTex
@inproceedings{Wanner2009Visua-5946,
  year={2009},
  title={Visual Sentiment Analysis of RSS News Feeds Featuring the US Presidential Election in 2008},
  booktitle={Visual Interfaces to the Social and the Semantic Web (VISSW 2009), Sanibel Island, Florida, 8th February 2009},
  author={Wanner, Franz and Rohrdantz, Christian and Mansmann, Florian and Oelke, Daniela and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5946">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2009</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5946/1/vissw2009.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5946"/>
    <dcterms:bibliographicCitation>Paper for: Visual Interfaces to the Social and the Semantic Web (VISSW 2009), Sanibel Island, Florida, 8th February 2009</dcterms:bibliographicCitation>
    <dc:creator>Rohrdantz, Christian</dc:creator>
    <dcterms:abstract xml:lang="eng">The technology behind RSS feeds offers great possibilities to retrieve more news items than ever. In contrast to these technical developments, human capabilities to read all these news items have not increased likewise. To bridge this gap, this paper presents a visual analytics tool for conducting semi-automatic sentiment analysis of large news feeds. While the tool automatically retrieves and analyzes RSS feeds with respect to positive and negative opinion words, the more demanding news analysis of finding trends, spotting peculiarities and putting events into context is left to the human expert. For a solid analysis the news similarity filter enables highlighting of similar or redundant news items. A case study about news related to the US presidential election in 2008 shows how the visual interface of the tool empowers the analyst to draw meaningful conclusions without the effort of reading all news postings.</dcterms:abstract>
    <dc:creator>Oelke, Daniela</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:32Z</dcterms:available>
    <dc:contributor>Mansmann, Florian</dc:contributor>
    <dcterms:title>Visual Sentiment Analysis of RSS News Feeds Featuring the US Presidential Election in 2008</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:32Z</dc:date>
    <dc:language>deu</dc:language>
    <dc:contributor>Rohrdantz, Christian</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Wanner, Franz</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Wanner, Franz</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5946/1/vissw2009.pdf"/>
    <dc:contributor>Oelke, Daniela</dc:contributor>
    <dc:creator>Mansmann, Florian</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen