Human 3D In Vitro Models for Developmental Neurotoxicity

No Thumbnail Available
Files
There are no files associated with this item.
Date
2018
Authors
Smirnova, Lena
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a collection
Publication status
Published
Published in
Handbook of Developmental Neurotoxicology / Slikker, William et al. (ed.). - Second edition. - London : Academic, 2018. - pp. 163-172. - ISBN 978-0-12-809405-1
Abstract
Developmental neurotoxicity (DNT) testing of industrial chemicals is an increasingly perceived societal need in light of strong increases in neurodevelopmental disorders including autism. The current testing approach for DNT in vivo does not satisfy these needs because despite enormous costs and animal use, there appears to be limited predictivity for its health effects in humans. The Center for Alternatives to Animal Testing (CAAT) in the United States and Europe along with its partners has steered a process of developing in vitro strategies for DNT, which is summarized here. This process has prioritized models, cellular key events, reference compounds, and others. This shaped a 3DNT approach, which aims to employ three-dimensional (3D) microphysiological models such as an induced pluripotent stem cells–derived mini-brain model from our laboratory. These complex models have to be complemented with, favorably 3D, models of homogenous cell models for pathway identification; an example of a 3D dopaminergic neurons (LUHMES) model is given. The human mini-brain model offers opportunities beyond studying developmental effects. It is also undergoing further amendments such as the addition of microglia and a blood–brain barrier. A major recent breakthrough showed that the model could be frozen for stockpiling and transport. This enables us to make the model readily available via commercial vendors. For this purpose, a Johns Hopkins spin-off biotech company, Organome LLC, was formed.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
neurodevelopment; brain; cell culture; organoids; spheroids; microphysiological systems; mini-brain
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SMIRNOVA, Lena, Thomas HARTUNG, 2018. Human 3D In Vitro Models for Developmental Neurotoxicity. In: SLIKKER, William, ed. and others. Handbook of Developmental Neurotoxicology. Second edition. London:Academic, pp. 163-172. ISBN 978-0-12-809405-1. Available under: doi: 10.1016/B978-0-12-809405-1.00014-6
BibTex
@incollection{Smirnova2018Human-41991,
  year={2018},
  doi={10.1016/B978-0-12-809405-1.00014-6},
  title={Human 3D In Vitro Models for Developmental Neurotoxicity},
  edition={Second edition},
  isbn={978-0-12-809405-1},
  publisher={Academic},
  address={London},
  booktitle={Handbook of Developmental Neurotoxicology},
  pages={163--172},
  editor={Slikker, William},
  author={Smirnova, Lena and Hartung, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41991">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41991"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-10T08:44:17Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Hartung, Thomas</dc:creator>
    <dc:creator>Smirnova, Lena</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-04-10T08:44:17Z</dcterms:available>
    <dc:contributor>Smirnova, Lena</dc:contributor>
    <dcterms:issued>2018</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Developmental neurotoxicity (DNT) testing of industrial chemicals is an increasingly perceived societal need in light of strong increases in neurodevelopmental disorders including autism. The current testing approach for DNT in vivo does not satisfy these needs because despite enormous costs and animal use, there appears to be limited predictivity for its health effects in humans. The Center for Alternatives to Animal Testing (CAAT) in the United States and Europe along with its partners has steered a process of developing in vitro strategies for DNT, which is summarized here. This process has prioritized models, cellular key events, reference compounds, and others. This shaped a 3DNT approach, which aims to employ three-dimensional (3D) microphysiological models such as an induced pluripotent stem cells–derived mini-brain model from our laboratory. These complex models have to be complemented with, favorably 3D, models of homogenous cell models for pathway identification; an example of a 3D dopaminergic neurons (LUHMES) model is given. The human mini-brain model offers opportunities beyond studying developmental effects. It is also undergoing further amendments such as the addition of microglia and a blood–brain barrier. A major recent breakthrough showed that the model could be frozen for stockpiling and transport. This enables us to make the model readily available via commercial vendors. For this purpose, a Johns Hopkins spin-off biotech company, Organome LLC, was formed.</dcterms:abstract>
    <dcterms:title>Human 3D In Vitro Models for Developmental Neurotoxicity</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed