Publikation:

Quantitative Methods for Uncertainty Visualization

Lade...
Vorschaubild

Dateien

Goertler_2-ahgl69t7y2u03.pdf
Goertler_2-ahgl69t7y2u03.pdfGröße: 29.05 MBDownloads: 608

Datum

2021

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Uncertainty is ubiquitous in the data that we collect. Nevertheless, when users create visualizations of this data, it is frequently neglected. The reason for this is twofold: For one, many common algorithms cannot handle uncertain data. If this is the case, the only option is to omit information and solely consider the most likely realization of the data. The second reason is that uncertainty is difficult to communicate to the user, either due to the lack of suitable visual variables or because users lack literacy in understanding uncertainty and its underlying mathematical model: probability distributions. The following thesis proposes methods to alleviate some of these problems by tackling two research questions: "How can we communicate uncertainty with its statistical properties?" and "How to adapt visualization methods to uncertainty?" First, we discuss sources of uncertainty, how to model it by using probability distributions, and different approaches for propagating uncertainty. Then, we propose a novel treemap technique designed to show uncertainty information. Our method relaxes the requirement of covering the entire designated space that traditional techniques adhere to. We propose modulated sine waves as a quantitative encoding of uncertainty, yet our resulting method is flexible to work with various visual variables. Next, we investigate how to perform dimensionality reduction on uncertainty data. We identify two general approaches: Monte Carlo sampling and analytical methods. We apply the former to adapt stress-majorization for creating layouts of probabilistic graphs. While Monte Carlo methods can be applied to a wide range of problems, the resulting visualizations can be difficult to interpret. On the other hand, analytical approaches do not share this drawback but are only viable if the uncertainty information can be propagated analytically through the projection. We show how this can be done to arrive at an uncertainty-aware version of principal component analysis. Besides, the analytical approach allows us to understand the projection's sensitivity to uncertainty in the data. Together with a summary of the developed methods, this thesis concludes with potential directions for future research. For this, we discuss Bayesian methods and their potential applications for handling uncertainty in visualization. Furthermore, we propose stippling, a form of visual abstraction, as a new way to visualize uncertainty in scalar fields.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

information visualization, uncertainty visualization, probability distributions, machine learning

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GÖRTLER, Jochen, 2021. Quantitative Methods for Uncertainty Visualization [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Gortler2021Quant-54465,
  year={2021},
  title={Quantitative Methods for Uncertainty Visualization},
  author={Görtler, Jochen},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54465">
    <dc:rights>Attribution-NonCommercial-ShareAlike 4.0 International</dc:rights>
    <dcterms:abstract xml:lang="eng">Uncertainty is ubiquitous in the data that we collect. Nevertheless, when users create visualizations of this data, it is frequently neglected. The reason for this is twofold: For one, many common algorithms cannot handle uncertain data. If this is the case, the only option is to omit information and solely consider the most likely realization of the data. The second reason is that uncertainty is difficult to communicate to the user, either due to the lack of suitable visual variables or because users lack literacy in understanding uncertainty and its underlying mathematical model: probability distributions. The following thesis proposes methods to alleviate some of these problems by tackling two research questions: "How can we communicate uncertainty with its statistical properties?" and "How to adapt visualization methods to uncertainty?" First, we discuss sources of uncertainty, how to model it by using probability distributions, and different approaches for propagating uncertainty. Then, we propose a novel treemap technique designed to show uncertainty information. Our method relaxes the requirement of covering the entire designated space that traditional techniques adhere to. We propose modulated sine waves as a quantitative encoding of uncertainty, yet our resulting method is flexible to work with various visual variables. Next, we investigate how to perform dimensionality reduction on uncertainty data. We identify two general approaches: Monte Carlo sampling and analytical methods. We apply the former to adapt stress-majorization for creating layouts of probabilistic graphs. While Monte Carlo methods can be applied to a wide range of problems, the resulting visualizations can be difficult to interpret. On the other hand, analytical approaches do not share this drawback but are only viable if the uncertainty information can be propagated analytically through the projection. We show how this can be done to arrive at an uncertainty-aware version of principal component analysis. Besides, the analytical approach allows us to understand the projection's sensitivity to uncertainty in the data. Together with a summary of the developed methods, this thesis concludes with potential directions for future research. For this, we discuss Bayesian methods and their potential applications for handling uncertainty in visualization. Furthermore, we propose stippling, a form of visual abstraction, as a new way to visualize uncertainty in scalar fields.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-30T10:42:20Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-30T10:42:20Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-sa/4.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54465"/>
    <dc:creator>Görtler, Jochen</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54465/3/Goertler_2-ahgl69t7y2u03.pdf"/>
    <dcterms:title>Quantitative Methods for Uncertainty Visualization</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54465/3/Goertler_2-ahgl69t7y2u03.pdf"/>
    <dc:contributor>Görtler, Jochen</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

July 12, 2021
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2021
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen