Lin's method for heteroclinic chains involving periodic orbits
Lin's method for heteroclinic chains involving periodic orbits
Loading...
Files
Date
2010
Authors
Knobloch, Jürgen
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Nonlinearity ; 23 (2010), 1. - pp. 23-54
Abstract
We present an extension of the theory known as Lin's method to heteroclinic chains that connect hyperbolic equilibria and hyperbolic periodic orbits. Based on the construction of a so-called Lin orbit, that is a sequence of continuous partial orbits that only have jumps in a certain prescribed linear subspace, estimates for these jumps are derived. We use the jump estimates to discuss bifurcation equations for homoclinic orbits near heteroclinic cycles between an equilibrium and a periodic orbit (EtoP cycles).
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Mathematical physics,Statistical physics and nonlinear systems
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
KNOBLOCH, Jürgen, Thorsten RIESS, 2010. Lin's method for heteroclinic chains involving periodic orbits. In: Nonlinearity. 23(1), pp. 23-54. Available under: doi: 10.1088/0951-7715/23/1/002BibTex
@article{Knobloch2010metho-6160, year={2010}, doi={10.1088/0951-7715/23/1/002}, title={Lin's method for heteroclinic chains involving periodic orbits}, number={1}, volume={23}, journal={Nonlinearity}, pages={23--54}, author={Knobloch, Jürgen and Rieß, Thorsten} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6160"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6160"/> <dc:creator>Rieß, Thorsten</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Knobloch, Jürgen</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:53Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6160/1/12918.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:53Z</dc:date> <dcterms:issued>2010</dcterms:issued> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We present an extension of the theory known as Lin's method to heteroclinic chains that connect hyperbolic equilibria and hyperbolic periodic orbits. Based on the construction of a so-called Lin orbit, that is a sequence of continuous partial orbits that only have jumps in a certain prescribed linear subspace, estimates for these jumps are derived. We use the jump estimates to discuss bifurcation equations for homoclinic orbits near heteroclinic cycles between an equilibrium and a periodic orbit (EtoP cycles).</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Rieß, Thorsten</dc:contributor> <dcterms:bibliographicCitation>First publ. in: Nonlinearity 23 (2010), 1, pp. 23-54</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6160/1/12918.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:format>application/pdf</dc:format> <dc:contributor>Knobloch, Jürgen</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Lin's method for heteroclinic chains involving periodic orbits</dcterms:title> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes