Link Proximity Analysis : Clustering Websites by Examining Link Proximity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This research-in-progress paper presents a new approach called Link Proximity Analysis (LPA) for identifying related web pages based on link analysis. In contrast to current techniques, which ignore intra-page link analysis, the one put forth here examines the relative positioning of links to each other within websites. The approach uses the fact that a clear correlation between the proximity of links to each other and the subject-relatedness of the linked websites can be observed on nearly every web page. By statistically analyzing this relationship and measuring the amount of sentences, paragraphs, etc. between two links, related websites can be automatically, identified as a first study has proven.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GIPP, Bela, Adriana TAYLOR, Jöran BEEL, 2010. Link Proximity Analysis : Clustering Websites by Examining Link Proximity. 14th ECDL 2010. Glasgow, 6. Sept. 2010 - 10. Sept. 2010. In: LALMAS, Mounia, ed. and others. Research and advanced technology for digital libraries : 14th European Conference, ECDL 2010, Glasgow, UK, September 6 - 10, 2010; proceedings. Berlin [u.a.]: Springer, 2010, pp. 449-452. Lecture Notes in Computer Science. 6273. ISBN 978-3-642-15463-8. Available under: doi: 10.1007/978-3-642-15464-5_54BibTex
@inproceedings{Gipp2010Proxi-30947, year={2010}, doi={10.1007/978-3-642-15464-5_54}, title={Link Proximity Analysis : Clustering Websites by Examining Link Proximity}, number={6273}, isbn={978-3-642-15463-8}, publisher={Springer}, address={Berlin [u.a.]}, series={Lecture Notes in Computer Science}, booktitle={Research and advanced technology for digital libraries : 14th European Conference, ECDL 2010, Glasgow, UK, September 6 - 10, 2010; proceedings}, pages={449--452}, editor={Lalmas, Mounia}, author={Gipp, Bela and Taylor, Adriana and Beel, Jöran} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30947"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Beel, Jöran</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Gipp, Bela</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Taylor, Adriana</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-13T08:34:30Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30947/1/Gipp_0-285760.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30947/1/Gipp_0-285760.pdf"/> <dcterms:abstract xml:lang="eng">This research-in-progress paper presents a new approach called Link Proximity Analysis (LPA) for identifying related web pages based on link analysis. In contrast to current techniques, which ignore intra-page link analysis, the one put forth here examines the relative positioning of links to each other within websites. The approach uses the fact that a clear correlation between the proximity of links to each other and the subject-relatedness of the linked websites can be observed on nearly every web page. By statistically analyzing this relationship and measuring the amount of sentences, paragraphs, etc. between two links, related websites can be automatically, identified as a first study has proven.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2010</dcterms:issued> <dc:contributor>Taylor, Adriana</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-13T08:34:30Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30947"/> <dcterms:title>Link Proximity Analysis : Clustering Websites by Examining Link Proximity</dcterms:title> <dc:creator>Gipp, Bela</dc:creator> <dc:creator>Beel, Jöran</dc:creator> </rdf:Description> </rdf:RDF>