An S-related DCV generated by a convex function in a jump market
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider an incomplete market with general jumps, in which the discounted price process S of a risky asset is a given bounded semimartingale. We continue our work on the S-related dynamic convex valuation (DCV) initiated in Xiong and Kohlmann [23] by considering here an S-related DCV Cĝ whose dynamic penalty functional αĝ is generated by a convex function ĝ. So the penalty Junctional takes the following form is the density process of an equivalent martingale measure (EMM) Q for S with respect to the fundamental EMM Q0. For a given ∈ L∞ (FT), we prove that (Cĝ(ξ) is the first component of the minimal bounded solution of a backward semimartingale equation (BSE) generated by a convex, possibly non-Lipschitz g. If this BSE has a bounded solution (Y, θ1, θ2, L) such that θ2 is also bounded and 〈L〉T ∈ L∞ (FT), we prove that Cĝt(ξ) = Yt, Q0-a.s., for all t ∈ [0, T]. Finally, we introduce the concept of a bounded Cĝ-(super-)martingale and derive a decomposition for a Cĝ-supermartingale.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
XIONG, Dewen, Michael KOHLMANN, 2010. An S-related DCV generated by a convex function in a jump market. In: Stochastic analysis and applications. 2010, 28(2), pp. 202-225. Available under: doi: 10.1080/07362990903546389BibTex
@article{Xiong2010Srela-835, year={2010}, doi={10.1080/07362990903546389}, title={An S-related DCV generated by a convex function in a jump market}, number={2}, volume={28}, journal={Stochastic analysis and applications}, pages={202--225}, author={Xiong, Dewen and Kohlmann, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/835"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:03Z</dc:date> <dcterms:bibliographicCitation>Publ. in: Stochastic analysis and applications 28 (2010), 2, pp. 202-225</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dc:creator>Xiong, Dewen</dc:creator> <dcterms:abstract xml:lang="eng">We consider an incomplete market with general jumps, in which the discounted price process S of a risky asset is a given bounded semimartingale. We continue our work on the S-related dynamic convex valuation (DCV) initiated in Xiong and Kohlmann [23] by considering here an S-related DCV Cĝ whose dynamic penalty functional αĝ is generated by a convex function ĝ. So the penalty Junctional takes the following form is the density process of an equivalent martingale measure (EMM) Q for S with respect to the fundamental EMM Q0. For a given ∈ L∞ (FT), we prove that (Cĝ(ξ) is the first component of the minimal bounded solution of a backward semimartingale equation (BSE) generated by a convex, possibly non-Lipschitz g. If this BSE has a bounded solution (Y, θ1, θ2, L) such that θ2 is also bounded and 〈L〉T ∈ L∞ (FT), we prove that Cĝt(ξ) = Yt, Q0-a.s., for all t ∈ [0, T]. Finally, we introduce the concept of a bounded Cĝ-(super-)martingale and derive a decomposition for a Cĝ-supermartingale.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2010</dcterms:issued> <dc:contributor>Kohlmann, Michael</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/835"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>An S-related DCV generated by a convex function in a jump market</dcterms:title> <dc:contributor>Xiong, Dewen</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:03Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dc:creator>Kohlmann, Michael</dc:creator> </rdf:Description> </rdf:RDF>