Functional alterations by a subgroup of neonicotinoid pesticides in human dopaminergic neurons

Loading...
Thumbnail Image
Date
2021
Authors
Loser, Dominik
Hinojosa, Maria G.
Schaefer, Jasmin
Johansson, Ylva
Grillberger, Karin
Danker, Timm
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Archives of toxicology ; 95 (2021), 6. - pp. 2081-2107. - Springer. - ISSN 0340-5761. - eISSN 1432-0738
Abstract
Neonicotinoid pesticides, originally developed to target the insect nervous system, have been reported to interact with human receptors and to activate rodent neurons. Therefore, we evaluated in how far these compounds may trigger signaling in human neurons, and thus, affect the human adult or developing nervous system. We used SH-SY5Y neuroblastoma cells as established model of nicotinic acetylcholine receptor (nAChR) signaling. In parallel, we profiled dopaminergic neurons, generated from LUHMES neuronal precursor cells, as novel system to study nAChR activation in human post-mitotic neurons. Changes of the free intracellular Ca2+ concentration ([Ca2+]i) were used as readout, and key findings were confirmed by patch clamp recordings. Nicotine triggered typical neuronal signaling responses that were blocked by antagonists, such as tubocurarine and mecamylamine. Pharmacological approaches suggested a functional expression of α7 and non-α7 nAChRs on LUHMES cells. In this novel test system, the neonicotinoids acetamiprid, imidacloprid, clothianidin and thiacloprid, but not thiamethoxam and dinotefuran, triggered [Ca2+]i signaling at 10-100 µM. Strong synergy of the active neonicotinoids (at low micromolar concentrations) with the α7 nAChR-positive allosteric modulator PNU-120596 was observed in LUHMES and SH-SY5Y cells, and specific antagonists fully inhibited such signaling. To provide a third line of evidence for neonicotinoid signaling via nAChR, we studied cross-desensitization: pretreatment of LUHMES and SH-SY5Y cells with active neonicotinoids (at 1-10 µM) blunted the signaling response of nicotine. The pesticides (at 3-30 µM) also blunted the response to the non-α7 agonist ABT 594 in LUHMES cells. These data show that human neuronal cells are functionally affected by low micromolar concentrations of several neonicotinoids. An effect of such signals on nervous system development is a toxicological concern.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Live-cell calcium imaging, Neurotoxicity, Nicotine, Desensitization, Molecular docking
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690LOSER, Dominik, Maria G. HINOJOSA, Jonathan BLUM, Jasmin SCHAEFER, Markus BRÜLL, Ylva JOHANSSON, Ilinca SUCIU, Karin GRILLBERGER, Timm DANKER, Marcel LEIST, 2021. Functional alterations by a subgroup of neonicotinoid pesticides in human dopaminergic neurons. In: Archives of toxicology. Springer. 95(6), pp. 2081-2107. ISSN 0340-5761. eISSN 1432-0738. Available under: doi: 10.1007/s00204-021-03031-1
BibTex
@article{Loser2021-06Funct-53414,
  year={2021},
  doi={10.1007/s00204-021-03031-1},
  title={Functional alterations by a subgroup of neonicotinoid pesticides in human dopaminergic neurons},
  number={6},
  volume={95},
  issn={0340-5761},
  journal={Archives of toxicology},
  pages={2081--2107},
  author={Loser, Dominik and Hinojosa, Maria G. and Blum, Jonathan and Schaefer, Jasmin and Brüll, Markus and Johansson, Ylva and Suciu, Ilinca and Grillberger, Karin and Danker, Timm and Leist, Marcel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53414">
    <dc:creator>Leist, Marcel</dc:creator>
    <dc:contributor>Blum, Jonathan</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Johansson, Ylva</dc:contributor>
    <dc:creator>Suciu, Ilinca</dc:creator>
    <dc:creator>Grillberger, Karin</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-20T11:36:00Z</dc:date>
    <dcterms:title>Functional alterations by a subgroup of neonicotinoid pesticides in human dopaminergic neurons</dcterms:title>
    <dc:creator>Schaefer, Jasmin</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53414/1/Loser_2-aakdap34dro30.pdf"/>
    <dc:contributor>Schaefer, Jasmin</dc:contributor>
    <dc:creator>Brüll, Markus</dc:creator>
    <dc:creator>Danker, Timm</dc:creator>
    <dc:contributor>Hinojosa, Maria G.</dc:contributor>
    <dc:contributor>Leist, Marcel</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53414"/>
    <dc:creator>Blum, Jonathan</dc:creator>
    <dc:contributor>Grillberger, Karin</dc:contributor>
    <dcterms:abstract xml:lang="eng">Neonicotinoid pesticides, originally developed to target the insect nervous system, have been reported to interact with human receptors and to activate rodent neurons. Therefore, we evaluated in how far these compounds may trigger signaling in human neurons, and thus, affect the human adult or developing nervous system. We used SH-SY5Y neuroblastoma cells as established model of nicotinic acetylcholine receptor (nAChR) signaling. In parallel, we profiled dopaminergic neurons, generated from LUHMES neuronal precursor cells, as novel system to study nAChR activation in human post-mitotic neurons. Changes of the free intracellular Ca&lt;sup&gt;2+&lt;/sup&gt; concentration ([Ca&lt;sup&gt;2+&lt;/sup&gt;]&lt;sub&gt;i&lt;/sub&gt;) were used as readout, and key findings were confirmed by patch clamp recordings. Nicotine triggered typical neuronal signaling responses that were blocked by antagonists, such as tubocurarine and mecamylamine. Pharmacological approaches suggested a functional expression of α7 and non-α7 nAChRs on LUHMES cells. In this novel test system, the neonicotinoids acetamiprid, imidacloprid, clothianidin and thiacloprid, but not thiamethoxam and dinotefuran, triggered [Ca&lt;sup&gt;2+&lt;/sup&gt;]&lt;sub&gt;i&lt;/sub&gt; signaling at 10-100 µM. Strong synergy of the active neonicotinoids (at low micromolar concentrations) with the α7 nAChR-positive allosteric modulator PNU-120596 was observed in LUHMES and SH-SY5Y cells, and specific antagonists fully inhibited such signaling. To provide a third line of evidence for neonicotinoid signaling via nAChR, we studied cross-desensitization: pretreatment of LUHMES and SH-SY5Y cells with active neonicotinoids (at 1-10 µM) blunted the signaling response of nicotine. The pesticides (at 3-30 µM) also blunted the response to the non-α7 agonist ABT 594 in LUHMES cells. These data show that human neuronal cells are functionally affected by low micromolar concentrations of several neonicotinoids. An effect of such signals on nervous system development is a toxicological concern.</dcterms:abstract>
    <dc:contributor>Danker, Timm</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Brüll, Markus</dc:contributor>
    <dc:contributor>Loser, Dominik</dc:contributor>
    <dc:creator>Johansson, Ylva</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2021-06</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-20T11:36:00Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Hinojosa, Maria G.</dc:creator>
    <dc:creator>Loser, Dominik</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53414/1/Loser_2-aakdap34dro30.pdf"/>
    <dc:contributor>Suciu, Ilinca</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:rights>Attribution 4.0 International</dc:rights>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes