On the evolution of clonal plant life histories
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Clonal plant life histories are special in at least four respects: (1) Clonal plants can also reproduce vegetatively, (2) vegetative reproduction can be realised with short or long spacers, (3) and it may allow to plastically place vegetative offspring in benign patches. (4) Moreover, ramets of clonal plants may remain physically and physiologically integrated. Because of the apparent utility of such traits and because ecological patterns of distribution of clonal and nonclonal plants differ, adaptation is a tempting explanation of observed clonal life-history variation. However, adaptive evolution requires (1) heritable genetic variation and (2) a trait effect on fitness, and (3) it may be constrained if other evolutionary forces are overriding selection or by constraints, costs and trade-offs. (1) The few studies undertaken so far reported broad-sense heritability for clonal traits. Variation in selectively neutral genetic markers appears as pronounced in populations of clonal as non-clonal plants. However, neutral markers may not reflect heritable variation of life-history traits. Moreover, clonal plants may have been sampled at larger spatial scales. Empirical information on the contribution of somatic mutations to heritable variation is lacking. (2) Clonal life-history traits were found to affect fitness. However, much of this evidence stems from artificial rather than natural environments. (3) The relative importance of gene flow, inbreeding, and genetic drift, compared with selection, in the evolution of clonal life histories is hardly explored. Benefits of clonal life-history traits were frequently studied and found. However, there is also evidence for constraints, trade-offs, and costs. In conclusion, though it is very likely, that clonal life-history traits are adaptive, it is neither clear to which degree this is the case, nor which clonal life-history traits constitute adaptations to which environmental factors. Moreover, evolutionary interactions among clonal life-history traits and between clonal and non-clonal ones, such as the mating system, are not well explored. There remains much interesting work to be done in this field – which will be articularly interesting if it is done in the field.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FISCHER, Markus, Mark VAN KLEUNEN, 2001. On the evolution of clonal plant life histories. In: Evolutionary Ecology. 2001, 15(4/6), pp. 565-582. ISSN 0269-7653. Available under: doi: 10.1023/A:1016013721469BibTex
@article{Fischer2001evolu-12470, year={2001}, doi={10.1023/A:1016013721469}, title={On the evolution of clonal plant life histories}, number={4/6}, volume={15}, issn={0269-7653}, journal={Evolutionary Ecology}, pages={565--582}, author={Fischer, Markus and van Kleunen, Mark} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12470"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12470/1/fischerkleunen2001.pdf"/> <dcterms:bibliographicCitation>First publ. in: Evolutionary Ecology 15 (2001), 4-6, pp. 565-582</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">Clonal plant life histories are special in at least four respects: (1) Clonal plants can also reproduce vegetatively, (2) vegetative reproduction can be realised with short or long spacers, (3) and it may allow to plastically place vegetative offspring in benign patches. (4) Moreover, ramets of clonal plants may remain physically and physiologically integrated. Because of the apparent utility of such traits and because ecological patterns of distribution of clonal and nonclonal plants differ, adaptation is a tempting explanation of observed clonal life-history variation. However, adaptive evolution requires (1) heritable genetic variation and (2) a trait effect on fitness, and (3) it may be constrained if other evolutionary forces are overriding selection or by constraints, costs and trade-offs. (1) The few studies undertaken so far reported broad-sense heritability for clonal traits. Variation in selectively neutral genetic markers appears as pronounced in populations of clonal as non-clonal plants. However, neutral markers may not reflect heritable variation of life-history traits. Moreover, clonal plants may have been sampled at larger spatial scales. Empirical information on the contribution of somatic mutations to heritable variation is lacking. (2) Clonal life-history traits were found to affect fitness. However, much of this evidence stems from artificial rather than natural environments. (3) The relative importance of gene flow, inbreeding, and genetic drift, compared with selection, in the evolution of clonal life histories is hardly explored. Benefits of clonal life-history traits were frequently studied and found. However, there is also evidence for constraints, trade-offs, and costs. In conclusion, though it is very likely, that clonal life-history traits are adaptive, it is neither clear to which degree this is the case, nor which clonal life-history traits constitute adaptations to which environmental factors. Moreover, evolutionary interactions among clonal life-history traits and between clonal and non-clonal ones, such as the mating system, are not well explored. There remains much interesting work to be done in this field – which will be articularly interesting if it is done in the field.</dcterms:abstract> <dcterms:issued>2001</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Fischer, Markus</dc:creator> <dcterms:title>On the evolution of clonal plant life histories</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-22T07:21:03Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12470/1/fischerkleunen2001.pdf"/> <dc:language>eng</dc:language> <dc:contributor>Fischer, Markus</dc:contributor> <dc:contributor>van Kleunen, Mark</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12470"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-22T07:21:03Z</dcterms:available> <dc:creator>van Kleunen, Mark</dc:creator> </rdf:Description> </rdf:RDF>