Publikation:

Approaches to Conditional Risk

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Filipović, Damir
Vogelpoth, Nicolas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

SIAM Journal on Financial Mathematics. 2012, 3(1), pp. 402-432. eISSN 1945-497X. Available under: doi: 10.1137/090773076

Zusammenfassung

We present and compare two different approaches to conditional risk measures. One approach draws from convex analysis in vector spaces and presents risk measures as functions on $L^p$ spaces, while the other approach utilizes module-based convex analysis where conditional risk measures are defined on $L^p$-type modules. Both approaches utilize general duality theory for vector-valued convex functions, in contrast to the current literature, in which we find ad hoc dual representations. By presenting several applications such as monotone and (sub)cash invariant hulls with corresponding examples we illustrate that module-based convex analysis is well suited to the concept of conditional risk measures. Read More: http://epubs.siam.org/doi/abs/10.1137/090773076We present and compare two different approaches to conditional risk measures. One approach draws from convex analysis in vector spaces and presents risk measures as functions on $L^p$ spaces, while the other approach utilizes module-based convex analysis where conditional risk measures are defined on $L^p$-type modules. Both approaches utilize general duality theory for vector-valued convex functions, in contrast to the current literature, in which we find ad hoc dual representations. By presenting several applications such as monotone and (sub)cash invariant hulls with corresponding examples we illustrate that module-based convex analysis is well suited to the concept of conditional risk measures.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FILIPOVIĆ, Damir, Michael KUPPER, Nicolas VOGELPOTH, 2012. Approaches to Conditional Risk. In: SIAM Journal on Financial Mathematics. 2012, 3(1), pp. 402-432. eISSN 1945-497X. Available under: doi: 10.1137/090773076
BibTex
@article{Filipovic2012-01Appro-40916,
  year={2012},
  doi={10.1137/090773076},
  title={Approaches to Conditional Risk},
  number={1},
  volume={3},
  journal={SIAM Journal on Financial Mathematics},
  pages={402--432},
  author={Filipović, Damir and Kupper, Michael and Vogelpoth, Nicolas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40916">
    <dc:contributor>Filipović, Damir</dc:contributor>
    <dc:creator>Vogelpoth, Nicolas</dc:creator>
    <dcterms:abstract xml:lang="eng">We present and compare two different approaches to conditional risk measures. One approach draws from convex analysis in vector spaces and presents risk measures as functions on $L^p$ spaces, while the other approach utilizes module-based convex analysis where conditional risk measures are defined on $L^p$-type modules. Both approaches utilize general duality theory for vector-valued convex functions, in contrast to the current literature, in which we find ad hoc dual representations. By presenting several applications such as monotone and (sub)cash invariant hulls with corresponding examples we illustrate that module-based convex analysis is well suited to the concept of conditional risk measures. Read More: http://epubs.siam.org/doi/abs/10.1137/090773076We present and compare two different approaches to conditional risk measures. One approach draws from convex analysis in vector spaces and presents risk measures as functions on $L^p$ spaces, while the other approach utilizes module-based convex analysis where conditional risk measures are defined on $L^p$-type modules. Both approaches utilize general duality theory for vector-valued convex functions, in contrast to the current literature, in which we find ad hoc dual representations. By presenting several applications such as monotone and (sub)cash invariant hulls with corresponding examples we illustrate that module-based convex analysis is well suited to the concept of conditional risk measures.</dcterms:abstract>
    <dc:creator>Filipović, Damir</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Kupper, Michael</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40916"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kupper, Michael</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-13T10:49:55Z</dcterms:available>
    <dcterms:title>Approaches to Conditional Risk</dcterms:title>
    <dc:contributor>Vogelpoth, Nicolas</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:issued>2012-01</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-13T10:49:55Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen