Approaches to Conditional Risk
Approaches to Conditional Risk
Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
oops
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
SIAM Journal on Financial Mathematics ; 3 (2012), 1. - S. 402-432. - eISSN 1945-497X
Zusammenfassung
We present and compare two different approaches to conditional risk measures. One approach draws from convex analysis in vector spaces and presents risk measures as functions on $L^p$ spaces, while the other approach utilizes module-based convex analysis where conditional risk measures are defined on $L^p$-type modules. Both approaches utilize general duality theory for vector-valued convex functions, in contrast to the current literature, in which we find ad hoc dual representations. By presenting several applications such as monotone and (sub)cash invariant hulls with corresponding examples we illustrate that module-based convex analysis is well suited to the concept of conditional risk measures. Read More: http://epubs.siam.org/doi/abs/10.1137/090773076We present and compare two different approaches to conditional risk measures. One approach draws from convex analysis in vector spaces and presents risk measures as functions on $L^p$ spaces, while the other approach utilizes module-based convex analysis where conditional risk measures are defined on $L^p$-type modules. Both approaches utilize general duality theory for vector-valued convex functions, in contrast to the current literature, in which we find ad hoc dual representations. By presenting several applications such as monotone and (sub)cash invariant hulls with corresponding examples we illustrate that module-based convex analysis is well suited to the concept of conditional risk measures.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
FILIPOVIĆ, Damir, Michael KUPPER, Nicolas VOGELPOTH, 2012. Approaches to Conditional Risk. In: SIAM Journal on Financial Mathematics. 3(1), pp. 402-432. eISSN 1945-497X. Available under: doi: 10.1137/090773076BibTex
@article{Filipovic2012-01Appro-40916, year={2012}, doi={10.1137/090773076}, title={Approaches to Conditional Risk}, number={1}, volume={3}, journal={SIAM Journal on Financial Mathematics}, pages={402--432}, author={Filipović, Damir and Kupper, Michael and Vogelpoth, Nicolas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40916"> <dc:contributor>Filipović, Damir</dc:contributor> <dc:creator>Vogelpoth, Nicolas</dc:creator> <dcterms:abstract xml:lang="eng">We present and compare two different approaches to conditional risk measures. One approach draws from convex analysis in vector spaces and presents risk measures as functions on $L^p$ spaces, while the other approach utilizes module-based convex analysis where conditional risk measures are defined on $L^p$-type modules. Both approaches utilize general duality theory for vector-valued convex functions, in contrast to the current literature, in which we find ad hoc dual representations. By presenting several applications such as monotone and (sub)cash invariant hulls with corresponding examples we illustrate that module-based convex analysis is well suited to the concept of conditional risk measures. Read More: http://epubs.siam.org/doi/abs/10.1137/090773076We present and compare two different approaches to conditional risk measures. One approach draws from convex analysis in vector spaces and presents risk measures as functions on $L^p$ spaces, while the other approach utilizes module-based convex analysis where conditional risk measures are defined on $L^p$-type modules. Both approaches utilize general duality theory for vector-valued convex functions, in contrast to the current literature, in which we find ad hoc dual representations. By presenting several applications such as monotone and (sub)cash invariant hulls with corresponding examples we illustrate that module-based convex analysis is well suited to the concept of conditional risk measures.</dcterms:abstract> <dc:creator>Filipović, Damir</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Kupper, Michael</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40916"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Kupper, Michael</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-13T10:49:55Z</dcterms:available> <dcterms:title>Approaches to Conditional Risk</dcterms:title> <dc:contributor>Vogelpoth, Nicolas</dc:contributor> <dc:language>eng</dc:language> <dcterms:issued>2012-01</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-13T10:49:55Z</dc:date> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein