Visualizing frequent patterns in large multivariate time series

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2011
Autor:innen
Hao, Ming
Marwah, Manish
Sharma, Ratnesh
Dayal, Umeshwar
Patnaik, Debprakash
Ramakrishnan, Naren
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
WONG, Pak Chung, ed. and others. Visualization and Data Analysis 2011. SPIE, 2011, pp. 78680J-78680J-10. SPIE Proceedings. 7868. Available under: doi: 10.1117/12.872169
Zusammenfassung

The detection of previously unknown, frequently occurring patterns in time series, often called motifs, has been recognized as an important task. However, it is difficult to discover and visualize these motifs as their numbers increase, especially in large multivariate time series. To find frequent motifs, we use several temporal data mining and event encoding techniques to cluster and convert a multivariate time series to a sequence of events. Then we quantify the efficiency of the discovered motifs by linking them with a performance metric. To visualize frequent patterns in a large time series with potentially hundreds of nested motifs on a single display, we introduce three novel visual analytics methods: (1) motif layout, using colored rectangles for visualizing the occurrences and hierarchical relationships of motifs in a multivariate time series, (2) motif distortion, for enlarging or shrinking motifs as appropriate for easy analysis and (3) motif merging, to combine a number of identical adjacent motif instances without cluttering the display. Analysts can interactively optimize the degree of distortion and merging to get the best possible view. A specific motif (e.g., the most efficient or least efficient motif) can be quickly detected from a large time series for further investigation. We have applied these methods to two real-world data sets: data center cooling and oil well production. The results provide important new insights into the recurring patterns.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
IS&T/SPIE Electronic Imaging, San Francisco, California
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690HAO, Ming, Manish MARWAH, Halldor JANETZKO, Ratnesh SHARMA, Daniel A. KEIM, Umeshwar DAYAL, Debprakash PATNAIK, Naren RAMAKRISHNAN, 2011. Visualizing frequent patterns in large multivariate time series. IS&T/SPIE Electronic Imaging. San Francisco, California. In: WONG, Pak Chung, ed. and others. Visualization and Data Analysis 2011. SPIE, 2011, pp. 78680J-78680J-10. SPIE Proceedings. 7868. Available under: doi: 10.1117/12.872169
BibTex
@inproceedings{Hao2011-01-24Visua-19392,
  year={2011},
  doi={10.1117/12.872169},
  title={Visualizing frequent patterns in large multivariate time series},
  number={7868},
  publisher={SPIE},
  series={SPIE Proceedings},
  booktitle={Visualization and Data Analysis 2011},
  pages={78680J--78680J-10},
  editor={Wong, Pak Chung},
  author={Hao, Ming and Marwah, Manish and Janetzko, Halldor and Sharma, Ratnesh and Keim, Daniel A. and Dayal, Umeshwar and Patnaik, Debprakash and Ramakrishnan, Naren}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19392">
    <dcterms:issued>2011-01-24</dcterms:issued>
    <dc:contributor>Patnaik, Debprakash</dc:contributor>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:contributor>Ramakrishnan, Naren</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:title>Visualizing frequent patterns in large multivariate time series</dcterms:title>
    <dc:contributor>Marwah, Manish</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-06-28T09:45:49Z</dcterms:available>
    <dc:creator>Patnaik, Debprakash</dc:creator>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:creator>Hao, Ming</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Hao, Ming</dc:contributor>
    <dc:creator>Marwah, Manish</dc:creator>
    <dcterms:bibliographicCitation>Publ. in: Visualization and data analysis 2011 : 24 - 25 January 2011, California, United States ; [part of] IS&amp;T/SPIE electronic imaging, science and technology / Pak Chung Wong ... (Eds). - Bellingham, Wash. : SPIE, 2011. - 78680J [17]. - (Proceedings of SPIE ; 7868). - ISBN 978-0-8194-8405-5</dcterms:bibliographicCitation>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19392"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <dc:creator>Ramakrishnan, Naren</dc:creator>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Sharma, Ratnesh</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-06-28T09:45:49Z</dc:date>
    <dc:creator>Sharma, Ratnesh</dc:creator>
    <dcterms:abstract xml:lang="eng">The detection of previously unknown, frequently occurring patterns in time series, often called motifs, has been recognized as an important task. However, it is difficult to discover and visualize these motifs as their numbers increase, especially in large multivariate time series. To find frequent motifs, we use several temporal data mining and event encoding techniques to cluster and convert a multivariate time series to a sequence of events. Then we quantify the efficiency of the discovered motifs by linking them with a performance metric. To visualize frequent patterns in a large time series with potentially hundreds of nested motifs on a single display, we introduce three novel visual analytics methods: (1) motif layout, using colored rectangles for visualizing the occurrences and hierarchical relationships of motifs in a multivariate time series, (2) motif distortion, for enlarging or shrinking motifs as appropriate for easy analysis and (3) motif merging, to combine a number of identical adjacent motif instances without cluttering the display. Analysts can interactively optimize the degree of distortion and merging to get the best possible view. A specific motif (e.g., the most efficient or least efficient motif) can be quickly detected from a large time series for further investigation. We have applied these methods to two real-world data sets: data center cooling and oil well production. The results provide important new insights into the recurring patterns.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen