Plasmon Resonances for Sub-100 nm Silicon Ablation : Quantitative Measurement and Nanometer-Scale Ablation Mechanism

Lade...
Vorschaubild
Dateien
Kolloch_231938.pdf
Kolloch_231938.pdfGröße: 23.14 MBDownloads: 422
Datum
2012
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

This dissertation provides a detailed overview of the mechanism behind direct ablation as a near-field photography technique and explores the possibilities and limitations of plasmonic near fields for the nanostructuring of substrates by direct ablation. Two main aspects of plasmonic near-field ablation are examined in greater detail.


First, highly detailed measurements of the near-field ablation distribution as well as quantitative measurements of the maximum near-field enhancement are presented. Those measurements are compared to Finite Difference in the Time Domain (FDTD) simulations which show good agreement in the intensity distribution. Comparing the values for the maximum fluence enhancement, however, a deviation between experiment and simulation is found. The simulated maximum intensity enhancement is larger than the measured one by a factor of between 4 to 10 depending on the size and shape of the plasmonic particle.


To comprehend this deviation, the mechanism responsible for the plasmonic near-field ablation of silicon is examined in more detail. Here, ablation features with a scale down to an eightieth of the illuminating wavelength are presented. Additionally, a mechanism limiting the minimum ablation volume for direct ablation of semiconductors is described.

Zusammenfassung in einer weiteren Sprache

Diese Arbeit dient dem Zweck, anhand von neuen Nahfeldphotographiemessungen einen umfassenden Überblick über den Mechanismus der plasmonischen Nahfeldablation zu geben. Darüber hinaus werden die Möglichkeiten und Beschränkungen der Oberflächen-Nanostrukturierung von Siliziumsubstraten durch direkte Ablation mit plasmonischen Nahfeldern untersucht. Die Untersuchungen unterteilen sich in zwei Hauptaspekte: Zunächst werden hochaufgelöste Messungen der Nahfeldablationsverteilung und quantitative Messungen der maximalen Nahfeldverstärkung von flachen, dreieckigen Gold-Nanostrukturen präsentiert. Im Vergleich mit "Finite Difference in the Time Domain" (FDTD) Simulationen der Nahfeldverteilung zeigt sich eine sehr gute Übereinstimmung von FDTD- und Nahfeldablationsverteilung. Der Vergleich der gemessenen und berechneten maximalen Nahfeldverstärkung weist jedoch eine deutliche Diskrepanz zwischen den Werten auf: In Abhängigkeit von Größe und Form der plasmonischen Nanostrukturen sind die errechneten maximalen Nahfeldverstärkungen um den Faktor 4 bis 10 größer.


Daraufhin wird der Mechanismus der Femtosekundenablation von Silizium genauer untersucht, um Rückschlüsse auf die Ursachen dieser Diskrepanz zu ziehen. Dabei können Details in der Nahfeldablationsverteilung in der Größenordnung eines Achtzigstels der beleuchtenden Wellenlänge gezeigt werden. Verschiedene Experimente legen einen Mechanismus nahe, der das minimale Ablationsvolumen auch für Femtosekundenbeschuss begrenzt.

Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KOLLOCH, Andreas, 2012. Plasmon Resonances for Sub-100 nm Silicon Ablation : Quantitative Measurement and Nanometer-Scale Ablation Mechanism [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Kolloch2012Plasm-23193,
  year={2012},
  title={Plasmon Resonances for Sub-100 nm Silicon Ablation : Quantitative Measurement and Nanometer-Scale Ablation Mechanism},
  author={Kolloch, Andreas},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23193">
    <dcterms:abstract xml:lang="eng">This dissertation provides a detailed overview of the mechanism behind direct ablation as a near-field photography technique and explores the possibilities and limitations of plasmonic near fields for the nanostructuring of substrates by direct ablation. Two main aspects of plasmonic near-field ablation are examined in greater detail.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;First, highly detailed measurements of the near-field ablation distribution as well as quantitative measurements of the maximum near-field enhancement are presented. Those measurements are compared to Finite Difference in the Time Domain (FDTD) simulations which show good agreement in the intensity distribution. Comparing the values for the maximum fluence enhancement, however, a deviation between experiment and simulation is found. The simulated maximum intensity enhancement is larger than the measured one by a factor of between 4 to 10 depending on the size and shape of the plasmonic particle.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;To comprehend this deviation, the mechanism responsible for the plasmonic near-field ablation of silicon is examined in more detail. Here, ablation features with a scale down to an eightieth of the illuminating wavelength are presented. Additionally, a mechanism limiting the minimum ablation volume for direct ablation of semiconductors is described.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-16T11:49:01Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23193"/>
    <dc:creator>Kolloch, Andreas</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-07-16T11:49:01Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Kolloch, Andreas</dc:contributor>
    <dcterms:issued>2012</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23193/1/Kolloch_231938.pdf"/>
    <dcterms:title>Plasmon Resonances for Sub-100 nm Silicon Ablation : Quantitative Measurement and Nanometer-Scale Ablation Mechanism</dcterms:title>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23193/1/Kolloch_231938.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
December 14, 2012
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen