SNIPE : A New Method to Identify Imaging Biomarker for Early Detection of Alzheimer's Disease

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Autor:innen
Coupé, Pierrick
Eskildsen, Simon F.
Manjón, José
Fonov, Vladimir
Allard, Michèle
Collins, Louis
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
YUSHKEVICH, Paul A., ed., Lei WANG, ed., Sebastien OURSELIN, ed.. NIBAD'12 : MICCAI 2012 Workshop on Novel Biomarkers for Alzheimer's Disease and Related Disorders. CreateSpace Independent Publishing Platform, 2012, pp. 41-51. ISBN 978-1-4792-6199-4
Zusammenfassung

While the automatic detection of AD has been widely studied, the problem of the prediction of AD (or its early detection) has been less investigated. This might be explained by the fact that the prediction problem is clearly more challenging since the anatomical changes are more subtle. However, from a clinical point of view the prediction of AD is the key question since it is in that moment when treatment is possible. The potential use of structural MRI as imaging biomarker for Alzheimer's disease (AD) for early detection has become generally accepted, especially the use of atrophy of entorhinal cortex (EC) and hippocampus (HC). Therefore, in this study, we analyze the capabilities of the recently proposed method, SNIPE (Scoring by Nonlocal Image Patch Estimator), for the early detection of AD to analyze EC and HC atrophy over the entire ADNI database (834 subjects). During validation, the detection (AD vs. CN) and the prediction (pMCI vs. sMCI) efficiency of SNIPE were studied. The obtained results showed that SNIPE obtained competitive or better results than HC volume, cortical thickness and TBM. Moreover, results indicated that MRI grading-based biomarkers are more relevant than volume-based biomarkers. Finally, the success rate obtained by SNIPE was 90% for detection (AD vs. CN) and 74% for prediction (pMCI vs. sMCI).

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
150 Psychologie
Schlagwörter
Konferenz
MICCAI 2012 Workshop on Novel Biomarkers for Alzheimer's Disease and Related Disorders, 5. Okt. 2012 - 5. Okt. 2012, Nice
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690COUPÉ, Pierrick, Simon F. ESKILDSEN, José MANJÓN, Vladimir FONOV, Jens C. PRUESSNER, Michèle ALLARD, Louis COLLINS, 2012. SNIPE : A New Method to Identify Imaging Biomarker for Early Detection of Alzheimer's Disease. MICCAI 2012 Workshop on Novel Biomarkers for Alzheimer's Disease and Related Disorders. Nice, 5. Okt. 2012 - 5. Okt. 2012. In: YUSHKEVICH, Paul A., ed., Lei WANG, ed., Sebastien OURSELIN, ed.. NIBAD'12 : MICCAI 2012 Workshop on Novel Biomarkers for Alzheimer's Disease and Related Disorders. CreateSpace Independent Publishing Platform, 2012, pp. 41-51. ISBN 978-1-4792-6199-4
BibTex
@inproceedings{Coupe2012SNIPE-56039,
  year={2012},
  title={SNIPE : A New Method to Identify Imaging Biomarker for Early Detection of Alzheimer's Disease},
  isbn={978-1-4792-6199-4},
  publisher={CreateSpace Independent Publishing Platform},
  booktitle={NIBAD'12 : MICCAI 2012 Workshop on Novel Biomarkers for Alzheimer's Disease and Related Disorders},
  pages={41--51},
  editor={Yushkevich, Paul A. and Wang, Lei and Ourselin, Sebastien},
  author={Coupé, Pierrick and Eskildsen, Simon F. and Manjón, José and Fonov, Vladimir and Pruessner, Jens C. and Allard, Michèle and Collins, Louis}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56039">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56039"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-23T10:51:44Z</dc:date>
    <dc:creator>Manjón, José</dc:creator>
    <dc:contributor>Coupé, Pierrick</dc:contributor>
    <dcterms:issued>2012</dcterms:issued>
    <dc:creator>Pruessner, Jens C.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-23T10:51:44Z</dcterms:available>
    <dc:creator>Eskildsen, Simon F.</dc:creator>
    <dcterms:abstract xml:lang="eng">While the automatic detection of AD has been widely studied, the problem of the prediction of AD (or its early detection) has been less investigated. This might be explained by the fact that the prediction problem is clearly more challenging since the anatomical changes are more subtle. However, from a clinical point of view the prediction of AD is the key question since it is in that moment when treatment is possible. The potential use of structural MRI as imaging biomarker for Alzheimer's disease (AD) for early detection has become generally accepted, especially the use of atrophy of entorhinal cortex (EC) and hippocampus (HC). Therefore, in this study, we analyze the capabilities of the recently proposed method, SNIPE (Scoring by Nonlocal Image Patch Estimator), for the early detection of AD to analyze EC and HC atrophy over the entire ADNI database (834 subjects). During validation, the detection (AD vs. CN) and the prediction (pMCI vs. sMCI) efficiency of SNIPE were studied. The obtained results showed that SNIPE obtained competitive or better results than HC volume, cortical thickness and TBM. Moreover, results indicated that MRI grading-based biomarkers are more relevant than volume-based biomarkers. Finally, the success rate obtained by SNIPE was 90% for detection (AD vs. CN) and 74% for prediction (pMCI vs. sMCI).</dcterms:abstract>
    <dc:contributor>Pruessner, Jens C.</dc:contributor>
    <dc:contributor>Fonov, Vladimir</dc:contributor>
    <dc:creator>Allard, Michèle</dc:creator>
    <dc:creator>Collins, Louis</dc:creator>
    <dc:creator>Coupé, Pierrick</dc:creator>
    <dcterms:title>SNIPE : A New Method to Identify Imaging Biomarker for Early Detection of Alzheimer's Disease</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Allard, Michèle</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Eskildsen, Simon F.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Manjón, José</dc:contributor>
    <dc:contributor>Collins, Louis</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Fonov, Vladimir</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen