Publikation: CUDA-based multi-core implementation of MDS-based bioinformatics algorithms
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Solving problems in bioinformatics often needs extensive computational power. Current trends in processor architecture, especially massive multi-core processors for graphic cards, combine a large number of cores into a single chip to improve the overall performance. The Compute Unified Device Architecture (CUDA) provides programming interfaces to make full use of the computing power of graphics processing units. We present a way to use CUDA for substantial performance improvement of methods based on multi-dimensional scaling (MDS). The suitability of the CUDA architecture as a high-performance computing platform is studied by adapting a MDS algorithm on specific hardware properties. We show how typical bioinformatics problems related to dimension reduction and network layout benefit from the multi-core implementation of the MDS algorithm. CUDA-based methods are introduced and compared to standard solutions, demonstrating 50-fold acceleration and above.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FESTER, , Falk SCHREIBER, Marc STRICKERT, 2009. CUDA-based multi-core implementation of MDS-based bioinformatics algorithms. German conference on bioinformatics 2009. Halle-Wittenberg, 28. Sept. 2009 - 30. Sept. 2009. In: GROSSE, Ivo, ed., Steffen NEUMANN, ed., Stefan POSCH, ed., Falk SCHREIBER, ed., Peter STADLER, ed.. German conference on bioinformatics 2009. Bonn: Gesellschaft für Informatik, 2009, pp. 67-79. Lecture Notes in Informatics. P-157. ISSN 1617-5468. ISBN 978-3-88579-251-2BibTex
@inproceedings{Fester2009CUDAb-40247, year={2009}, title={CUDA-based multi-core implementation of MDS-based bioinformatics algorithms}, url={http://subs.emis.de/LNI/Proceedings/Proceedings157/67.pdf}, number={P-157}, isbn={978-3-88579-251-2}, issn={1617-5468}, publisher={Gesellschaft für Informatik}, address={Bonn}, series={Lecture Notes in Informatics}, booktitle={German conference on bioinformatics 2009}, pages={67--79}, editor={Grosse, Ivo and Neumann, Steffen and Posch, Stefan and Schreiber, Falk and Stadler, Peter}, author={Fester and Schreiber, Falk and Strickert, Marc} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40247"> <dcterms:issued>2009</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Schreiber, Falk</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-05T08:55:10Z</dc:date> <dc:language>eng</dc:language> <dcterms:title>CUDA-based multi-core implementation of MDS-based bioinformatics algorithms</dcterms:title> <dcterms:abstract xml:lang="eng">Solving problems in bioinformatics often needs extensive computational power. Current trends in processor architecture, especially massive multi-core processors for graphic cards, combine a large number of cores into a single chip to improve the overall performance. The Compute Unified Device Architecture (CUDA) provides programming interfaces to make full use of the computing power of graphics processing units. We present a way to use CUDA for substantial performance improvement of methods based on multi-dimensional scaling (MDS). The suitability of the CUDA architecture as a high-performance computing platform is studied by adapting a MDS algorithm on specific hardware properties. We show how typical bioinformatics problems related to dimension reduction and network layout benefit from the multi-core implementation of the MDS algorithm. CUDA-based methods are introduced and compared to standard solutions, demonstrating 50-fold acceleration and above.</dcterms:abstract> <dc:contributor>Strickert, Marc</dc:contributor> <dc:creator>Fester</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Schreiber, Falk</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40247"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Strickert, Marc</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-05T08:55:10Z</dcterms:available> <dc:contributor>Fester</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>