Scaling up search engine audits : Practical insights for algorithm auditing
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Algorithm audits have increased in recent years due to a growing need to independently assess the performance of automatically curated services that process, filter and rank the large and dynamic amount of information available on the Internet. Among several methodologies to perform such audits, virtual agents stand out because they offer the ability to perform systematic experiments, simulating human behaviour without the associated costs of recruiting participants. Motivated by the importance of research transparency and replicability of results, this article focuses on the challenges of such an approach. It provides methodological details, recommendations, lessons learned and limitations based on our experience of setting up experiments for eight search engines (including main, news, image and video sections) with hundreds of virtual agents placed in different regions. We demonstrate the successful performance of our research infrastructure across multiple data collections, with diverse experimental designs, and point to different changes and strategies that improve the quality of the method. We conclude that virtual agents are a promising venue for monitoring the performance of algorithms across long periods of time, and we hope that this article can serve as a basis for further research in this area.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ULLOA, Roberto, Mykola MAKHORTYKH, Aleksandra URMAN, 2024. Scaling up search engine audits : Practical insights for algorithm auditing. In: Journal of Information Science. Sage. 2024, 50(2), pp. 404-419. ISSN 0165-5515. eISSN 1741-6485. Available under: doi: 10.1177/01655515221093029BibTex
@article{Ulloa2024-04Scali-67821, year={2024}, doi={10.1177/01655515221093029}, title={Scaling up search engine audits : Practical insights for algorithm auditing}, number={2}, volume={50}, issn={0165-5515}, journal={Journal of Information Science}, pages={404--419}, author={Ulloa, Roberto and Makhortykh, Mykola and Urman, Aleksandra} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67821"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-19T07:57:35Z</dc:date> <dc:language>eng</dc:language> <dc:creator>Makhortykh, Mykola</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:title>Scaling up search engine audits : Practical insights for algorithm auditing</dcterms:title> <dc:contributor>Makhortykh, Mykola</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract>Algorithm audits have increased in recent years due to a growing need to independently assess the performance of automatically curated services that process, filter and rank the large and dynamic amount of information available on the Internet. Among several methodologies to perform such audits, virtual agents stand out because they offer the ability to perform systematic experiments, simulating human behaviour without the associated costs of recruiting participants. Motivated by the importance of research transparency and replicability of results, this article focuses on the challenges of such an approach. It provides methodological details, recommendations, lessons learned and limitations based on our experience of setting up experiments for eight search engines (including main, news, image and video sections) with hundreds of virtual agents placed in different regions. We demonstrate the successful performance of our research infrastructure across multiple data collections, with diverse experimental designs, and point to different changes and strategies that improve the quality of the method. We conclude that virtual agents are a promising venue for monitoring the performance of algorithms across long periods of time, and we hope that this article can serve as a basis for further research in this area.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-19T07:57:35Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Ulloa, Roberto</dc:creator> <dc:creator>Urman, Aleksandra</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Urman, Aleksandra</dc:contributor> <dcterms:issued>2024-04</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67821"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Ulloa, Roberto</dc:contributor> </rdf:Description> </rdf:RDF>