On the effect of boundary conditions on the scalability of Schwarz methods

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Angaben zur Forschungsförderung (Freitext)
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung

In contrast with classical Schwarz theory, recent results have shown that for special domain geometries, one-level Schwarz methods can be scalable. This property has been proved for the Laplace equation and external Dirichlet boundary conditions. Much less is known if mixed boundary conditions are considered. This short manuscript focuses on the convergence and scalability analysis of one-level parallel Schwarz method and optimized Schwarz method for several different external configurations of boundary conditions, i.e., mixed Dirichlet, Neumann and Robin conditions.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690CIARAMELLA, Gabriele, Luca MECHELLI, 2021. On the effect of boundary conditions on the scalability of Schwarz methods
BibTex
@unpublished{Ciaramella2021-03-27T09:12:19Zeffec-55637,
  year={2021},
  title={On the effect of boundary conditions on the scalability of Schwarz methods},
  author={Ciaramella, Gabriele and Mechelli, Luca}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55637">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2021-03-27T09:12:19Z</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-24T10:31:28Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Mechelli, Luca</dc:creator>
    <dcterms:title>On the effect of boundary conditions on the scalability of Schwarz methods</dcterms:title>
    <dc:contributor>Ciaramella, Gabriele</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Ciaramella, Gabriele</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55637"/>
    <dcterms:abstract xml:lang="eng">In contrast with classical Schwarz theory, recent results have shown that for special domain geometries, one-level Schwarz methods can be scalable. This property has been proved for the Laplace equation and external Dirichlet boundary conditions. Much less is known if mixed boundary conditions are considered. This short manuscript focuses on the convergence and scalability analysis of one-level parallel Schwarz method and optimized Schwarz method for several different external configurations of boundary conditions, i.e., mixed Dirichlet, Neumann and Robin conditions.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-24T10:31:28Z</dcterms:available>
    <dc:contributor>Mechelli, Luca</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen