On the effect of boundary conditions on the scalability of Schwarz methods
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung
In contrast with classical Schwarz theory, recent results have shown that for special domain geometries, one-level Schwarz methods can be scalable. This property has been proved for the Laplace equation and external Dirichlet boundary conditions. Much less is known if mixed boundary conditions are considered. This short manuscript focuses on the convergence and scalability analysis of one-level parallel Schwarz method and optimized Schwarz method for several different external configurations of boundary conditions, i.e., mixed Dirichlet, Neumann and Robin conditions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
CIARAMELLA, Gabriele, Luca MECHELLI, 2021. On the effect of boundary conditions on the scalability of Schwarz methodsBibTex
@unpublished{Ciaramella2021-03-27T09:12:19Zeffec-55637, year={2021}, title={On the effect of boundary conditions on the scalability of Schwarz methods}, author={Ciaramella, Gabriele and Mechelli, Luca} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55637"> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2021-03-27T09:12:19Z</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-24T10:31:28Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Mechelli, Luca</dc:creator> <dcterms:title>On the effect of boundary conditions on the scalability of Schwarz methods</dcterms:title> <dc:contributor>Ciaramella, Gabriele</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Ciaramella, Gabriele</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55637"/> <dcterms:abstract xml:lang="eng">In contrast with classical Schwarz theory, recent results have shown that for special domain geometries, one-level Schwarz methods can be scalable. This property has been proved for the Laplace equation and external Dirichlet boundary conditions. Much less is known if mixed boundary conditions are considered. This short manuscript focuses on the convergence and scalability analysis of one-level parallel Schwarz method and optimized Schwarz method for several different external configurations of boundary conditions, i.e., mixed Dirichlet, Neumann and Robin conditions.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-24T10:31:28Z</dcterms:available> <dc:contributor>Mechelli, Luca</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja