On the effect of boundary conditions on the scalability of Schwarz methods

No Thumbnail Available
Files
There are no files associated with this item.
Date
2021
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Preprint
Publication status
Published
Published in
Abstract
In contrast with classical Schwarz theory, recent results have shown that for special domain geometries, one-level Schwarz methods can be scalable. This property has been proved for the Laplace equation and external Dirichlet boundary conditions. Much less is known if mixed boundary conditions are considered. This short manuscript focuses on the convergence and scalability analysis of one-level parallel Schwarz method and optimized Schwarz method for several different external configurations of boundary conditions, i.e., mixed Dirichlet, Neumann and Robin conditions.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690CIARAMELLA, Gabriele, Luca MECHELLI, 2021. On the effect of boundary conditions on the scalability of Schwarz methods
BibTex
@unpublished{Ciaramella2021-03-27T09:12:19Zeffec-55637,
  year={2021},
  title={On the effect of boundary conditions on the scalability of Schwarz methods},
  author={Ciaramella, Gabriele and Mechelli, Luca}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55637">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2021-03-27T09:12:19Z</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-24T10:31:28Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Mechelli, Luca</dc:creator>
    <dcterms:title>On the effect of boundary conditions on the scalability of Schwarz methods</dcterms:title>
    <dc:contributor>Ciaramella, Gabriele</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Ciaramella, Gabriele</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55637"/>
    <dcterms:abstract xml:lang="eng">In contrast with classical Schwarz theory, recent results have shown that for special domain geometries, one-level Schwarz methods can be scalable. This property has been proved for the Laplace equation and external Dirichlet boundary conditions. Much less is known if mixed boundary conditions are considered. This short manuscript focuses on the convergence and scalability analysis of one-level parallel Schwarz method and optimized Schwarz method for several different external configurations of boundary conditions, i.e., mixed Dirichlet, Neumann and Robin conditions.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-24T10:31:28Z</dcterms:available>
    <dc:contributor>Mechelli, Luca</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed