Zusammenhängende Untergruppen von pro-Lieschen Gruppen

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
1986
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung

In this paper we consider the lattice ΛG of all closed connected subgroups of pro-Lie groups G, which seems to have in some sense a more geometric nature than the full lattice of all closed subgroups. We determine those pro-Lie groups whose lattice shares one of the elementary geometric lattice properties, such as the existence of complements and relative complements, semi-modularity and its dual, the chain condition, self-duality and related ones. Apart from these results dealing with subgroup lattices we also get two structure theorems, one saying that maximal closed analytic subgroups of Lie groups actually are maximal among all analytic subgroups, the other that each connected abelian pro-Lie group is a direct product of a compact group with copies of the reals.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SCHEIDERER, Claus, 1986. Zusammenhängende Untergruppen von pro-Lieschen Gruppen. In: Geometriae Dedicata. 1986, 21(2). ISSN 0046-5755. eISSN 1572-9168. Available under: doi: 10.1007/BF00182910
BibTex
@article{Scheiderer1986Zusam-23340,
  year={1986},
  doi={10.1007/BF00182910},
  title={Zusammenhängende Untergruppen von pro-Lieschen Gruppen},
  number={2},
  volume={21},
  issn={0046-5755},
  journal={Geometriae Dedicata},
  author={Scheiderer, Claus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23340">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23340"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-15T06:38:31Z</dc:date>
    <dc:contributor>Scheiderer, Claus</dc:contributor>
    <dcterms:abstract xml:lang="eng">In this paper we consider the lattice ΛG of all closed connected subgroups of pro-Lie groups G, which seems to have in some sense a more geometric nature than the full lattice of all closed subgroups. We determine those pro-Lie groups whose lattice shares one of the elementary geometric lattice properties, such as the existence of complements and relative complements, semi-modularity and its dual, the chain condition, self-duality and related ones. Apart from these results dealing with subgroup lattices we also get two structure theorems, one saying that maximal closed analytic subgroups of Lie groups actually are maximal among all analytic subgroups, the other that each connected abelian pro-Lie group is a direct product of a compact group with copies of the reals.</dcterms:abstract>
    <dc:creator>Scheiderer, Claus</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>1986</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-15T06:38:31Z</dcterms:available>
    <dcterms:title>Zusammenhängende Untergruppen von pro-Lieschen Gruppen</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>Geometriae Dedicata ; 21 (1986), 2. - S. 231-248</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen