Zusammenhängende Untergruppen von pro-Lieschen Gruppen

No Thumbnail Available
Files
There are no files associated with this item.
Date
1986
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Geometriae Dedicata ; 21 (1986), 2. - ISSN 0046-5755. - eISSN 1572-9168
Abstract
In this paper we consider the lattice ΛG of all closed connected subgroups of pro-Lie groups G, which seems to have in some sense a more geometric nature than the full lattice of all closed subgroups. We determine those pro-Lie groups whose lattice shares one of the elementary geometric lattice properties, such as the existence of complements and relative complements, semi-modularity and its dual, the chain condition, self-duality and related ones. Apart from these results dealing with subgroup lattices we also get two structure theorems, one saying that maximal closed analytic subgroups of Lie groups actually are maximal among all analytic subgroups, the other that each connected abelian pro-Lie group is a direct product of a compact group with copies of the reals.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SCHEIDERER, Claus, 1986. Zusammenhängende Untergruppen von pro-Lieschen Gruppen. In: Geometriae Dedicata. 21(2). ISSN 0046-5755. eISSN 1572-9168. Available under: doi: 10.1007/BF00182910
BibTex
@article{Scheiderer1986Zusam-23340,
  year={1986},
  doi={10.1007/BF00182910},
  title={Zusammenhängende Untergruppen von pro-Lieschen Gruppen},
  number={2},
  volume={21},
  issn={0046-5755},
  journal={Geometriae Dedicata},
  author={Scheiderer, Claus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23340">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23340"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-15T06:38:31Z</dc:date>
    <dc:contributor>Scheiderer, Claus</dc:contributor>
    <dcterms:abstract xml:lang="eng">In this paper we consider the lattice ΛG of all closed connected subgroups of pro-Lie groups G, which seems to have in some sense a more geometric nature than the full lattice of all closed subgroups. We determine those pro-Lie groups whose lattice shares one of the elementary geometric lattice properties, such as the existence of complements and relative complements, semi-modularity and its dual, the chain condition, self-duality and related ones. Apart from these results dealing with subgroup lattices we also get two structure theorems, one saying that maximal closed analytic subgroups of Lie groups actually are maximal among all analytic subgroups, the other that each connected abelian pro-Lie group is a direct product of a compact group with copies of the reals.</dcterms:abstract>
    <dc:creator>Scheiderer, Claus</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>1986</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-15T06:38:31Z</dcterms:available>
    <dcterms:title>Zusammenhängende Untergruppen von pro-Lieschen Gruppen</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>Geometriae Dedicata ; 21 (1986), 2. - S. 231-248</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed