A multingual approach to question classification

Lade...
Vorschaubild
Dateien
Kalouli_2-96dkhplnq3224.pdf
Kalouli_2-96dkhplnq3224.pdfGröße: 153.73 KBDownloads: 243
Datum
2018
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Wortstellungsvariation in wh-Fragen: Evidenz aus dem Romanischen FOR 2111 TP 2 (Biezma)
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
CALZOLARI, Nicoletta, ed. and others. Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). Paris: ELRA, 2018, pp. 2715-2720
Zusammenfassung

In this paper we present the Konstanz Resource of Questions (KRoQ), the first dependency-parsed, parallel multilingual corpus of information-seeking and non information-seeking questions. In creating the corpus, we employ a linguistically motivated rule-based system that uses linguistic cues from one language to help classify and annotate questions across other languages. Our current corpus includes German, French, Spanish and Koine Greek. Based on the linguistically motivated heuristics we identify, a two-step scoring mechanism assigns intra- and inter-language scores to each question. Based on these scores, each question is classified as being either information seeking or non-information seeking. An evaluation shows that this mechanism correctly classifies questions in 79% of the cases. We release our corpus as a basis for further work in the area of question classification. It can be utilized as training and testing data for machine-learning algorithms, as corpus-data for theoretical linguistic questions or as a resource for further rule-based approaches to question identification.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
400 Sprachwissenschaft, Linguistik
Schlagwörter
Question Answering, Multilinguality, Corpus (Creation, Annotation, etc.)
Konferenz
Eleventh International Conference on Language Resources and Evaluation (LREC 2018), 7. Mai 2018 - 12. Mai 2018, Miyazaki, Japan
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KALOULI, Aikaterini-Lida, Katharina KAISER, Annette HAUTLI-JANISZ, Georg A. KAISER, Miriam BUTT, 2018. A multingual approach to question classification. Eleventh International Conference on Language Resources and Evaluation (LREC 2018). Miyazaki, Japan, 7. Mai 2018 - 12. Mai 2018. In: CALZOLARI, Nicoletta, ed. and others. Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). Paris: ELRA, 2018, pp. 2715-2720
BibTex
@inproceedings{Kalouli2018multi-43593,
  year={2018},
  title={A multingual approach to question classification},
  url={http://www.lrec-conf.org/proceedings/lrec2018/pdf/13.pdf},
  publisher={ELRA},
  address={Paris},
  booktitle={Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  pages={2715--2720},
  editor={Calzolari, Nicoletta},
  author={Kalouli, Aikaterini-Lida and Kaiser, Katharina and Hautli-Janisz, Annette and Kaiser, Georg A. and Butt, Miriam},
  note={ISBN: 979-10-95546-00-9}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43593">
    <dcterms:issued>2018</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43593/3/Kalouli_2-96dkhplnq3224.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Kaiser, Katharina</dc:creator>
    <dc:contributor>Kaiser, Katharina</dc:contributor>
    <dc:contributor>Kaiser, Georg A.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43593"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-23T11:55:34Z</dcterms:available>
    <dc:contributor>Kalouli, Aikaterini-Lida</dc:contributor>
    <dc:creator>Kalouli, Aikaterini-Lida</dc:creator>
    <dc:creator>Butt, Miriam</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43593/3/Kalouli_2-96dkhplnq3224.pdf"/>
    <dc:contributor>Hautli-Janisz, Annette</dc:contributor>
    <dc:creator>Hautli-Janisz, Annette</dc:creator>
    <dc:contributor>Butt, Miriam</dc:contributor>
    <dc:creator>Kaiser, Georg A.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-23T11:55:34Z</dc:date>
    <dcterms:abstract xml:lang="eng">In this paper we present the Konstanz Resource of Questions (KRoQ), the first dependency-parsed, parallel multilingual corpus of information-seeking and non information-seeking questions. In creating the corpus, we employ a linguistically motivated rule-based system that uses linguistic cues from one language to help classify and annotate questions across other languages. Our current corpus includes German, French, Spanish and Koine Greek. Based on the linguistically motivated heuristics we identify, a two-step scoring mechanism assigns intra- and inter-language scores to each question. Based on these scores, each question is classified as being either information seeking or non-information seeking. An evaluation shows that this mechanism correctly classifies questions in 79% of the cases. We release our corpus as a basis for further work in the area of question classification. It can be utilized as training and testing data for machine-learning algorithms, as corpus-data for theoretical linguistic questions or as a resource for further rule-based approaches to question identification.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>A multingual approach to question classification</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfdatum der URL
2018-10-23
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
ISBN: 979-10-95546-00-9
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen