Publikation:

Nonlinear Memory Capacity of Parallel Time-Delay Reservoir Computers in the Processing of Multidimensional Signals

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Henriques, Julie
Larger, Laurent
Ortega, Juan-Pablo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Neural Computation. 2016, 28(7), pp. 1411-1451. ISSN 0899-7667. eISSN 1530-888X. Available under: doi: 10.1162/NECO_a_00845

Zusammenfassung

This letter addresses the reservoir design problem in the context of delay-based reservoir computers for multidimensional input signals, parallel architectures, and real-time multitasking. First, an approximating reservoir model is presented in those frameworks that provides an explicit functional link between the reservoir architecture and its performance in the execution of a specific task. Second, the inference properties of the ridge regression estimator in the multivariate context are used to assess the impact of finite sample training on the decrease of the reservoir capacity. Finally, an empirical study is conducted that shows the adequacy of the theoretical results with the empirical performances exhibited by various reservoir architectures in the execution of several nonlinear tasks with multidimensional inputs. Our results confirm the robustness properties of the parallel reservoir architecture with respect to task misspecification and parameter choice already documented in the literature.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GRIGORYEVA, Lyudmila, Julie HENRIQUES, Laurent LARGER, Juan-Pablo ORTEGA, 2016. Nonlinear Memory Capacity of Parallel Time-Delay Reservoir Computers in the Processing of Multidimensional Signals. In: Neural Computation. 2016, 28(7), pp. 1411-1451. ISSN 0899-7667. eISSN 1530-888X. Available under: doi: 10.1162/NECO_a_00845
BibTex
@article{Grigoryeva2016-07Nonli-35211,
  year={2016},
  doi={10.1162/NECO_a_00845},
  title={Nonlinear Memory Capacity of Parallel Time-Delay Reservoir Computers in the Processing of Multidimensional Signals},
  number={7},
  volume={28},
  issn={0899-7667},
  journal={Neural Computation},
  pages={1411--1451},
  author={Grigoryeva, Lyudmila and Henriques, Julie and Larger, Laurent and Ortega, Juan-Pablo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35211">
    <dc:creator>Larger, Laurent</dc:creator>
    <dc:contributor>Larger, Laurent</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Henriques, Julie</dc:contributor>
    <dcterms:abstract xml:lang="eng">This letter addresses the reservoir design problem in the context of delay-based reservoir computers for multidimensional input signals, parallel architectures, and real-time multitasking. First, an approximating reservoir model is presented in those frameworks that provides an explicit functional link between the reservoir architecture and its performance in the execution of a specific task. Second, the inference properties of the ridge regression estimator in the multivariate context are used to assess the impact of finite sample training on the decrease of the reservoir capacity. Finally, an empirical study is conducted that shows the adequacy of the theoretical results with the empirical performances exhibited by various reservoir architectures in the execution of several nonlinear tasks with multidimensional inputs. Our results confirm the robustness properties of the parallel reservoir architecture with respect to task misspecification and parameter choice already documented in the literature.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-09-12T09:48:12Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Ortega, Juan-Pablo</dc:contributor>
    <dc:contributor>Grigoryeva, Lyudmila</dc:contributor>
    <dcterms:issued>2016-07</dcterms:issued>
    <dc:creator>Ortega, Juan-Pablo</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-09-12T09:48:12Z</dc:date>
    <dcterms:title>Nonlinear Memory Capacity of Parallel Time-Delay Reservoir Computers in the Processing of Multidimensional Signals</dcterms:title>
    <dc:creator>Grigoryeva, Lyudmila</dc:creator>
    <dc:creator>Henriques, Julie</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/35211"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen