Local analysis for semi-bounded groups
Local analysis for semi-bounded groups
No Thumbnail Available
Files
There are no files associated with this item.
Date
2012
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Fundamenta Mathematicae ; 216 (2012), 3. - pp. 223-258. - Institute of Mathematics. - ISSN 0016-2736. - eISSN 1730-6329
Abstract
An o-minimal expansion M=⟨M,<,+,0,…⟩ of an ordered group is called semi-bounded if it does not expand a real closed field. Possibly, it defines a real closed field with bounded domain I⊆M. Let us call a definable set short if it is in definable bijection with a definable subset of some In, and long otherwise. Previous work by Edmundo and Peterzil provided structure theorems for definable sets with respect to the dichotomy `bounded versus unbounded'. Peterzil (2009) conjectured a refined structure theorem with respect to the dichotomy `short versus long'. In this paper, we prove Peterzil's conjecture. In particular, we obtain a quantifier elimination result down to suitable existential formulas in the spirit of van den Dries (1998). Furthermore, we introduce a new closure operator that defines a pregeometry and gives rise to the refined notions of `long dimension' and `long-generic' elements. Those are in turn used in a local analysis for a semi-bounded group G, yielding the following result: on a long direction around each long-generic element of G the group operation is locally isomorphic to ⟨Mk,+⟩.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
ELEFTHERIOU, Pantelis E., 2012. Local analysis for semi-bounded groups. In: Fundamenta Mathematicae. Institute of Mathematics. 216(3), pp. 223-258. ISSN 0016-2736. eISSN 1730-6329. Available under: doi: 10.4064/fm216-3-3BibTex
@article{Eleftheriou2012Local-49667, year={2012}, doi={10.4064/fm216-3-3}, title={Local analysis for semi-bounded groups}, number={3}, volume={216}, issn={0016-2736}, journal={Fundamenta Mathematicae}, pages={223--258}, author={Eleftheriou, Pantelis E.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49667"> <dcterms:title>Local analysis for semi-bounded groups</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-27T08:55:39Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2012</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-27T08:55:39Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Eleftheriou, Pantelis E.</dc:contributor> <dcterms:abstract xml:lang="eng">An o-minimal expansion M=⟨M,<,+,0,…⟩ of an ordered group is called semi-bounded if it does not expand a real closed field. Possibly, it defines a real closed field with bounded domain I⊆M. Let us call a definable set short if it is in definable bijection with a definable subset of some In, and long otherwise. Previous work by Edmundo and Peterzil provided structure theorems for definable sets with respect to the dichotomy `bounded versus unbounded'. Peterzil (2009) conjectured a refined structure theorem with respect to the dichotomy `short versus long'. In this paper, we prove Peterzil's conjecture. In particular, we obtain a quantifier elimination result down to suitable existential formulas in the spirit of van den Dries (1998). Furthermore, we introduce a new closure operator that defines a pregeometry and gives rise to the refined notions of `long dimension' and `long-generic' elements. Those are in turn used in a local analysis for a semi-bounded group G, yielding the following result: on a long direction around each long-generic element of G the group operation is locally isomorphic to ⟨M<sup>k</sup>,+⟩.</dcterms:abstract> <dc:creator>Eleftheriou, Pantelis E.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49667"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed
Unknown