Local analysis for semi-bounded groups
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
An o-minimal expansion M=⟨M,<,+,0,…⟩ of an ordered group is called semi-bounded if it does not expand a real closed field. Possibly, it defines a real closed field with bounded domain I⊆M. Let us call a definable set short if it is in definable bijection with a definable subset of some In, and long otherwise. Previous work by Edmundo and Peterzil provided structure theorems for definable sets with respect to the dichotomy bounded versus unbounded'. Peterzil (2009) conjectured a refined structure theorem with respect to the dichotomy
short versus long'. In this paper, we prove Peterzil's conjecture. In particular, we obtain a quantifier elimination result down to suitable existential formulas in the spirit of van den Dries (1998). Furthermore, we introduce a new closure operator that defines a pregeometry and gives rise to the refined notions of long dimension' and
long-generic' elements. Those are in turn used in a local analysis for a semi-bounded group G, yielding the following result: on a long direction around each long-generic element of G the group operation is locally isomorphic to ⟨Mk,+⟩.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ELEFTHERIOU, Pantelis E., 2012. Local analysis for semi-bounded groups. In: Fundamenta Mathematicae. Institute of Mathematics. 2012, 216(3), pp. 223-258. ISSN 0016-2736. eISSN 1730-6329. Available under: doi: 10.4064/fm216-3-3BibTex
@article{Eleftheriou2012Local-49667, year={2012}, doi={10.4064/fm216-3-3}, title={Local analysis for semi-bounded groups}, number={3}, volume={216}, issn={0016-2736}, journal={Fundamenta Mathematicae}, pages={223--258}, author={Eleftheriou, Pantelis E.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49667"> <dcterms:title>Local analysis for semi-bounded groups</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-27T08:55:39Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2012</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-27T08:55:39Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Eleftheriou, Pantelis E.</dc:contributor> <dcterms:abstract xml:lang="eng">An o-minimal expansion M=⟨M,<,+,0,…⟩ of an ordered group is called semi-bounded if it does not expand a real closed field. Possibly, it defines a real closed field with bounded domain I⊆M. Let us call a definable set short if it is in definable bijection with a definable subset of some In, and long otherwise. Previous work by Edmundo and Peterzil provided structure theorems for definable sets with respect to the dichotomy `bounded versus unbounded'. Peterzil (2009) conjectured a refined structure theorem with respect to the dichotomy `short versus long'. In this paper, we prove Peterzil's conjecture. In particular, we obtain a quantifier elimination result down to suitable existential formulas in the spirit of van den Dries (1998). Furthermore, we introduce a new closure operator that defines a pregeometry and gives rise to the refined notions of `long dimension' and `long-generic' elements. Those are in turn used in a local analysis for a semi-bounded group G, yielding the following result: on a long direction around each long-generic element of G the group operation is locally isomorphic to ⟨M<sup>k</sup>,+⟩.</dcterms:abstract> <dc:creator>Eleftheriou, Pantelis E.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49667"/> </rdf:Description> </rdf:RDF>