Image Novelty Detection Based on Mean-Shift and Typical Set Size
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The detection of anomalous or novel images given a training dataset of only clean reference data (inliers) is an important task in computer vision. We propose a new shallow approach that represents both inlier and outlier images as ensembles of patches, which allows us to effectively detect novelties as mean shifts between reference data and outliers with the Hotelling T2 test. Since mean-shift can only be detected when the outlier ensemble is sufficiently separate from the typical set of the inlier distribution, this typical set acts as a blind spot for novelty detection. We therefore minimize its estimated size as our selection rule for critical hyperparameters, such as, e.g., the size of the patches is crucial. To showcase the capabilities of our approach, we compare results with classical and deep learning methods on the popular datasets MNIST and CIFAR-10, and demonstrate its real-world applicability in a large-scale industrial inspection scenario.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HERMANN, Matthias, Bastian GOLDLÜCKE, Matthias O. FRANZ, 2022. Image Novelty Detection Based on Mean-Shift and Typical Set Size. The International Conference on Image Analysis and Processing, ICIAP 2022. Lecce, Italy, 23. Mai 2022 - 27. Mai 2022. In: SCLAROFF, Stan, ed. and others. Image Analysis and Processing - ICIAP 2022 : 21st International Conference, Lecce, Italy, May 23-27, 2022, Proceedings, Part II. Cham: Springer, 2022, pp. 755-766. Lecture Notes in Computer Science. 13232. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-06429-6. Available under: doi: 10.1007/978-3-031-06430-2_63BibTex
@inproceedings{Hermann2022Image-59120, year={2022}, doi={10.1007/978-3-031-06430-2_63}, title={Image Novelty Detection Based on Mean-Shift and Typical Set Size}, number={13232}, isbn={978-3-031-06429-6}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Image Analysis and Processing - ICIAP 2022 : 21st International Conference, Lecce, Italy, May 23-27, 2022, Proceedings, Part II}, pages={755--766}, editor={Sclaroff, Stan}, author={Hermann, Matthias and Goldlücke, Bastian and Franz, Matthias O.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59120"> <dcterms:issued>2022</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T09:39:03Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Franz, Matthias O.</dc:creator> <dc:contributor>Franz, Matthias O.</dc:contributor> <dcterms:abstract xml:lang="eng">The detection of anomalous or novel images given a training dataset of only clean reference data (inliers) is an important task in computer vision. We propose a new shallow approach that represents both inlier and outlier images as ensembles of patches, which allows us to effectively detect novelties as mean shifts between reference data and outliers with the Hotelling T2 test. Since mean-shift can only be detected when the outlier ensemble is sufficiently separate from the typical set of the inlier distribution, this typical set acts as a blind spot for novelty detection. We therefore minimize its estimated size as our selection rule for critical hyperparameters, such as, e.g., the size of the patches is crucial. To showcase the capabilities of our approach, we compare results with classical and deep learning methods on the popular datasets MNIST and CIFAR-10, and demonstrate its real-world applicability in a large-scale industrial inspection scenario.</dcterms:abstract> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dcterms:title>Image Novelty Detection Based on Mean-Shift and Typical Set Size</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T09:39:03Z</dc:date> <dc:creator>Hermann, Matthias</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59120"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hermann, Matthias</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>