Publikation:

Global well-posedness of the Cauchy problem for the Jordan-Moore-Gibson-Thompson equation

Lade...
Vorschaubild

Dateien

Racke_2-8ztzhsco3jj82.pdf
Racke_2-8ztzhsco3jj82.pdfGröße: 554.74 KBDownloads: 422

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Submitted

Wird erscheinen in

Zusammenfassung

In this paper, we consider the Cauchy problem of a third order in time nonlinear equation known as the Jordan-Moore-Gibson-Thompson equation arising in acoustics as an alternative model to the well-known Kuznetsov equation. First, using the contraction mapping theorem, we show a local existence result in appropriate function spaces. Second, by using the energy method together with a bootstrap argument, we prove a global existence result for small data. Third, polynomial decay rates in time for the solution will be obtained for space dimensions N >=2.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RACKE, Reinhard, Belkacem SAID-HOUARI, 2019. Global well-posedness of the Cauchy problem for the Jordan-Moore-Gibson-Thompson equation
BibTex
@techreport{Racke2019Globa-45479,
  year={2019},
  series={Konstanzer Schriften in Mathematik},
  title={Global well-posedness of  the Cauchy problem for the Jordan-Moore-Gibson-Thompson equation},
  number={382},
  author={Racke, Reinhard and Said-Houari, Belkacem}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45479">
    <dc:creator>Racke, Reinhard</dc:creator>
    <dc:contributor>Said-Houari, Belkacem</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45479/3/Racke_2-8ztzhsco3jj82.pdf"/>
    <dcterms:title>Global well-posedness of  the Cauchy problem for the Jordan-Moore-Gibson-Thompson equation</dcterms:title>
    <dc:creator>Said-Houari, Belkacem</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-15T08:56:19Z</dc:date>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Racke, Reinhard</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-03-15T08:56:19Z</dcterms:available>
    <dcterms:issued>2019</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45479/3/Racke_2-8ztzhsco3jj82.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45479"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">In this paper, we consider the Cauchy problem of a third order in time nonlinear equation known as  the Jordan-Moore-Gibson-Thompson equation arising in acoustics as an alternative model to the well-known Kuznetsov equation. First, using the contraction mapping theorem, we show  a local existence result in appropriate function spaces. Second, by using the energy method together with a bootstrap argument, we prove a global existence result for small data. Third, polynomial decay rates in time for the solution will be obtained for space dimensions N &gt;=2.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen