POD-Based Mixed-Integer Optimal Control of the Heat Equation
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the present paper an optimal control problem governed by the heat equation is considered, where continuous as well as discrete controls are involved. To obtain the discrete controls the branch-and-bound method is utilized, where in each node a relaxed control constrained optimal control problem has to be solved involving only continuous controls. However, the solutions to many relaxed optimal control problems have to be computed numerically. For that reason model-order reduction is applied to speed-up the branch-and-bound method. In this work the method of proper orthogonal decomposition (POD) is used. A posteriori error estimation in each node ensures that the calculated solutions are sufficiently accurate. Numerical experiments illustrate the efficiency of the proposed strategy.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BACHMANN, Freya, Dennis BEERMANN, Jianjie LU, Stefan VOLKWEIN, 2019. POD-Based Mixed-Integer Optimal Control of the Heat Equation. In: Journal of Scientific Computing. 2019, 81(1), pp. 48-75. ISSN 0885-7474. eISSN 1573-7691. Available under: doi: 10.1007/s10915-019-00924-3BibTex
@article{Bachmann2019-10PODBa-39073.2, year={2019}, doi={10.1007/s10915-019-00924-3}, title={POD-Based Mixed-Integer Optimal Control of the Heat Equation}, number={1}, volume={81}, issn={0885-7474}, journal={Journal of Scientific Computing}, pages={48--75}, author={Bachmann, Freya and Beermann, Dennis and Lu, Jianjie and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39073.2"> <dc:creator>Bachmann, Freya</dc:creator> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:contributor>Beermann, Dennis</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Beermann, Dennis</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-09T15:27:15Z</dc:date> <dc:contributor>Bachmann, Freya</dc:contributor> <dc:contributor>Lu, Jianjie</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-09T15:27:15Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39073.2"/> <dc:language>eng</dc:language> <dc:creator>Volkwein, Stefan</dc:creator> <dc:creator>Lu, Jianjie</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">In the present paper an optimal control problem governed by the heat equation is considered, where continuous as well as discrete controls are involved. To obtain the discrete controls the branch-and-bound method is utilized, where in each node a relaxed control constrained optimal control problem has to be solved involving only continuous controls. However, the solutions to many relaxed optimal control problems have to be computed numerically. For that reason model-order reduction is applied to speed-up the branch-and-bound method. In this work the method of proper orthogonal decomposition (POD) is used. A posteriori error estimation in each node ensures that the calculated solutions are sufficiently accurate. Numerical experiments illustrate the efficiency of the proposed strategy.</dcterms:abstract> <dcterms:title>POD-Based Mixed-Integer Optimal Control of the Heat Equation</dcterms:title> <dcterms:issued>2019-10</dcterms:issued> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>