High-Affinity Interaction of Poly(ADP-ribose) and the Human DEK Oncoprotein Depends upon Chain Length

Loading...
Thumbnail Image
Date
2010
Authors
Fahrer, Jörg
Malanga, Maria
Markovitz, David M.
Kappes, Ferdinand
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Biochemistry ; 49 (2010), 33. - pp. 7119-7130. - ISSN 0006-2960. - eISSN 1520-4995
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a molecular DNA damage sensor that catalyzes the synthesis of the complex biopolymer poly(ADP-ribose) (PAR) under consumption of NAD+. PAR engages in fundamental cellular processes such as DNA metabolism and transcription and interacts noncovalently with specific binding proteins involved in DNA repair and regulation of chromatin structure. A factor implicated in DNA repair and chromatin organization is the DEK oncoprotein, an abundant and conserved constituent of metazoan chromatin, and the only member of its protein class. We have recently demonstrated that DEK, under stress conditions, is covalently modified with PAR by PARP-1, leading to a partial release of DEK into the cytoplasm. Additionally, we have also observed a noncovalent interaction between DEK and PAR, which we detail here. Using sequence alignment, we identify three functional PAR-binding sites in the DEK primary sequence and confirm their functionality in PAR binding studies. Furthermore, we show that the noncovalent binding to DEK is dependent on PAR chain length as revealed by an overlay blot technique and a PAR electrophoretic mobility shift assay. Intriguingly, DEK promotes the formation of a defined complex with a 54mer PAR (KD = 6 × 10−8 M), whereas no specific interaction is detected with a short PAR chain (18mer). In stark contrast to covalent poly(ADP-ribosyl)ation of DEK, the noncovalent interaction does not affect the overall ability of DEK to bind to DNA. Instead the noncovalent interaction interferes with subsequent DNA-dependent multimerization activities of DEK, as seen in South-Western, electrophoretic mobility shift, topology, and aggregation assays. In particular, noncovalent attachment of PAR to DEK promotes the formation of DEK−DEK complexes by competing with DNA binding. This was seen by the reduced affinity of PAR-bound DEK for DNA templates in solution. Taken together, our findings deepen the molecular understanding of the DEK−PAR interplay and support the existence of a cellular “PAR code” represented by PAR chain length.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690FAHRER, Jörg, Oliver POPP, Maria MALANGA, Sascha BENEKE, David M. MARKOVITZ, Elisa FERRANDO-MAY, Alexander BÜRKLE, Ferdinand KAPPES, 2010. High-Affinity Interaction of Poly(ADP-ribose) and the Human DEK Oncoprotein Depends upon Chain Length. In: Biochemistry. 49(33), pp. 7119-7130. ISSN 0006-2960. eISSN 1520-4995. Available under: doi: 10.1021/bi1004365
BibTex
@article{Fahrer2010HighA-13606,
  year={2010},
  doi={10.1021/bi1004365},
  title={High-Affinity Interaction of Poly(ADP-ribose) and the Human DEK Oncoprotein Depends upon Chain Length},
  number={33},
  volume={49},
  issn={0006-2960},
  journal={Biochemistry},
  pages={7119--7130},
  author={Fahrer, Jörg and Popp, Oliver and Malanga, Maria and Beneke, Sascha and Markovitz, David M. and Ferrando-May, Elisa and Bürkle, Alexander and Kappes, Ferdinand}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/13606">
    <dcterms:title>High-Affinity Interaction of Poly(ADP-ribose) and the Human DEK Oncoprotein Depends upon Chain Length</dcterms:title>
    <dc:contributor>Kappes, Ferdinand</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13606/2/2010-Biochemistry49-7119-Fahrer.pdf"/>
    <dc:contributor>Ferrando-May, Elisa</dc:contributor>
    <dc:creator>Fahrer, Jörg</dc:creator>
    <dcterms:abstract xml:lang="eng">Poly(ADP-ribose) polymerase-1 (PARP-1) is a molecular DNA damage sensor that catalyzes the synthesis of the complex biopolymer poly(ADP-ribose) (PAR) under consumption of NAD+. PAR engages in fundamental cellular processes such as DNA metabolism and transcription and interacts noncovalently with specific binding proteins involved in DNA repair and regulation of chromatin structure. A factor implicated in DNA repair and chromatin organization is the DEK oncoprotein, an abundant and conserved constituent of metazoan chromatin, and the only member of its protein class. We have recently demonstrated that DEK, under stress conditions, is covalently modified with PAR by PARP-1, leading to a partial release of DEK into the cytoplasm. Additionally, we have also observed a noncovalent interaction between DEK and PAR, which we detail here. Using sequence alignment, we identify three functional PAR-binding sites in the DEK primary sequence and confirm their functionality in PAR binding studies. Furthermore, we show that the noncovalent binding to DEK is dependent on PAR chain length as revealed by an overlay blot technique and a PAR electrophoretic mobility shift assay. Intriguingly, DEK promotes the formation of a defined complex with a 54mer PAR (KD = 6 × 10−8 M), whereas no specific interaction is detected with a short PAR chain (18mer). In stark contrast to covalent poly(ADP-ribosyl)ation of DEK, the noncovalent interaction does not affect the overall ability of DEK to bind to DNA. Instead the noncovalent interaction interferes with subsequent DNA-dependent multimerization activities of DEK, as seen in South-Western, electrophoretic mobility shift, topology, and aggregation assays. In particular, noncovalent attachment of PAR to DEK promotes the formation of DEK−DEK complexes by competing with DNA binding. This was seen by the reduced affinity of PAR-bound DEK for DNA templates in solution. Taken together, our findings deepen the molecular understanding of the DEK−PAR interplay and support the existence of a cellular “PAR code” represented by PAR chain length.</dcterms:abstract>
    <dc:creator>Markovitz, David M.</dc:creator>
    <dc:creator>Kappes, Ferdinand</dc:creator>
    <dc:creator>Bürkle, Alexander</dc:creator>
    <dc:creator>Ferrando-May, Elisa</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Beneke, Sascha</dc:creator>
    <dc:contributor>Beneke, Sascha</dc:contributor>
    <dc:contributor>Fahrer, Jörg</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-08-31T22:25:05Z</dcterms:available>
    <dc:creator>Popp, Oliver</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13606/2/2010-Biochemistry49-7119-Fahrer.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-14T09:09:24Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/13606"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Malanga, Maria</dc:contributor>
    <dc:creator>Malanga, Maria</dc:creator>
    <dc:contributor>Popp, Oliver</dc:contributor>
    <dc:contributor>Bürkle, Alexander</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Markovitz, David M.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:bibliographicCitation>First publ. in: Biochemistry 49 (2010), 33, pp. 7119-7130, DOI: 10.1021/bi1004365</dcterms:bibliographicCitation>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed