Evaluation Measures for Event Detection Techniques on Twitter Data Streams
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Twitter’s popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of social media data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a series of measures that we designed to support the quantitative and qualitative comparison of event detection techniques. In order to demonstrate the effectiveness of these measures, we apply them to state-of-the-art event detection techniques as well as baseline approaches using real-world Twitter streaming data.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2015. Evaluation Measures for Event Detection Techniques on Twitter Data Streams. 30th British International Conference on Databases, BICOD 2015. Edinburgh, 6. Juli 2015 - 8. Juli 2015. In: SEBASTIAN MANETH, , ed.. Data Science : 30th British International Conference on Databases, BICOD 2015, Edinburgh, UK, July 6-8, 2015; Proceedings. Cham [u.a.]: Springer, 2015, pp. 108-119. Lecture Notes in Computer Science. 9147. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-20423-9. Available under: doi: 10.1007/978-3-319-20424-6_11BibTex
@inproceedings{Weiler2015Evalu-32039, year={2015}, doi={10.1007/978-3-319-20424-6_11}, title={Evaluation Measures for Event Detection Techniques on Twitter Data Streams}, number={9147}, isbn={978-3-319-20423-9}, issn={0302-9743}, publisher={Springer}, address={Cham [u.a.]}, series={Lecture Notes in Computer Science}, booktitle={Data Science : 30th British International Conference on Databases, BICOD 2015, Edinburgh, UK, July 6-8, 2015; Proceedings}, pages={108--119}, editor={Sebastian Maneth}, author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32039"> <dc:creator>Scholl, Marc H.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/32039"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Grossniklaus, Michael</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-11-03T09:56:03Z</dcterms:available> <dc:contributor>Scholl, Marc H.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32039/1/Weiler_0-300924.pdf"/> <dc:creator>Grossniklaus, Michael</dc:creator> <dc:language>eng</dc:language> <dc:creator>Weiler, Andreas</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-11-03T09:56:03Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Evaluation Measures for Event Detection Techniques on Twitter Data Streams</dcterms:title> <dcterms:issued>2015</dcterms:issued> <dc:contributor>Weiler, Andreas</dc:contributor> <dcterms:abstract xml:lang="eng">Twitter’s popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of social media data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a series of measures that we designed to support the quantitative and qualitative comparison of event detection techniques. In order to demonstrate the effectiveness of these measures, we apply them to state-of-the-art event detection techniques as well as baseline approaches using real-world Twitter streaming data.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32039/1/Weiler_0-300924.pdf"/> </rdf:Description> </rdf:RDF>