Publikation:

Evaluation Measures for Event Detection Techniques on Twitter Data Streams

Lade...
Vorschaubild

Dateien

Weiler_0-300924.pdf
Weiler_0-300924.pdfGröße: 340.41 KBDownloads: 2135

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

SEBASTIAN MANETH, , ed.. Data Science : 30th British International Conference on Databases, BICOD 2015, Edinburgh, UK, July 6-8, 2015; Proceedings. Cham [u.a.]: Springer, 2015, pp. 108-119. Lecture Notes in Computer Science. 9147. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-20423-9. Available under: doi: 10.1007/978-3-319-20424-6_11

Zusammenfassung

Twitter’s popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of social media data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a series of measures that we designed to support the quantitative and qualitative comparison of event detection techniques. In order to demonstrate the effectiveness of these measures, we apply them to state-of-the-art event detection techniques as well as baseline approaches using real-world Twitter streaming data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

30th British International Conference on Databases, BICOD 2015, 6. Juli 2015 - 8. Juli 2015, Edinburgh
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2015. Evaluation Measures for Event Detection Techniques on Twitter Data Streams. 30th British International Conference on Databases, BICOD 2015. Edinburgh, 6. Juli 2015 - 8. Juli 2015. In: SEBASTIAN MANETH, , ed.. Data Science : 30th British International Conference on Databases, BICOD 2015, Edinburgh, UK, July 6-8, 2015; Proceedings. Cham [u.a.]: Springer, 2015, pp. 108-119. Lecture Notes in Computer Science. 9147. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-20423-9. Available under: doi: 10.1007/978-3-319-20424-6_11
BibTex
@inproceedings{Weiler2015Evalu-32039,
  year={2015},
  doi={10.1007/978-3-319-20424-6_11},
  title={Evaluation Measures for Event Detection Techniques on Twitter Data Streams},
  number={9147},
  isbn={978-3-319-20423-9},
  issn={0302-9743},
  publisher={Springer},
  address={Cham [u.a.]},
  series={Lecture Notes in Computer Science},
  booktitle={Data Science : 30th British International Conference on Databases, BICOD 2015, Edinburgh, UK, July 6-8, 2015; Proceedings},
  pages={108--119},
  editor={Sebastian Maneth},
  author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32039">
    <dc:creator>Scholl, Marc H.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/32039"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-11-03T09:56:03Z</dcterms:available>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32039/1/Weiler_0-300924.pdf"/>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Weiler, Andreas</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-11-03T09:56:03Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Evaluation Measures for Event Detection Techniques on Twitter Data Streams</dcterms:title>
    <dcterms:issued>2015</dcterms:issued>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dcterms:abstract xml:lang="eng">Twitter’s popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of social media data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a series of measures that we designed to support the quantitative and qualitative comparison of event detection techniques. In order to demonstrate the effectiveness of these measures, we apply them to state-of-the-art event detection techniques as well as baseline approaches using real-world Twitter streaming data.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32039/1/Weiler_0-300924.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen