Evaluation Measures for Event Detection Techniques on Twitter Data Streams

Lade...
Vorschaubild
Dateien
Weiler_0-300924.pdf
Weiler_0-300924.pdfGröße: 340.41 KBDownloads: 2083
Datum
2015
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
SEBASTIAN MANETH, , ed.. Data Science : 30th British International Conference on Databases, BICOD 2015, Edinburgh, UK, July 6-8, 2015; Proceedings. Cham [u.a.]: Springer, 2015, pp. 108-119. Lecture Notes in Computer Science. 9147. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-20423-9. Available under: doi: 10.1007/978-3-319-20424-6_11
Zusammenfassung

Twitter’s popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of social media data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a series of measures that we designed to support the quantitative and qualitative comparison of event detection techniques. In order to demonstrate the effectiveness of these measures, we apply them to state-of-the-art event detection techniques as well as baseline approaches using real-world Twitter streaming data.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
30th British International Conference on Databases, BICOD 2015, 6. Juli 2015 - 8. Juli 2015, Edinburgh
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2015. Evaluation Measures for Event Detection Techniques on Twitter Data Streams. 30th British International Conference on Databases, BICOD 2015. Edinburgh, 6. Juli 2015 - 8. Juli 2015. In: SEBASTIAN MANETH, , ed.. Data Science : 30th British International Conference on Databases, BICOD 2015, Edinburgh, UK, July 6-8, 2015; Proceedings. Cham [u.a.]: Springer, 2015, pp. 108-119. Lecture Notes in Computer Science. 9147. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-20423-9. Available under: doi: 10.1007/978-3-319-20424-6_11
BibTex
@inproceedings{Weiler2015Evalu-32039,
  year={2015},
  doi={10.1007/978-3-319-20424-6_11},
  title={Evaluation Measures for Event Detection Techniques on Twitter Data Streams},
  number={9147},
  isbn={978-3-319-20423-9},
  issn={0302-9743},
  publisher={Springer},
  address={Cham [u.a.]},
  series={Lecture Notes in Computer Science},
  booktitle={Data Science : 30th British International Conference on Databases, BICOD 2015, Edinburgh, UK, July 6-8, 2015; Proceedings},
  pages={108--119},
  editor={Sebastian Maneth},
  author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32039">
    <dc:creator>Scholl, Marc H.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/32039"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-11-03T09:56:03Z</dcterms:available>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32039/1/Weiler_0-300924.pdf"/>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Weiler, Andreas</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-11-03T09:56:03Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Evaluation Measures for Event Detection Techniques on Twitter Data Streams</dcterms:title>
    <dcterms:issued>2015</dcterms:issued>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dcterms:abstract xml:lang="eng">Twitter’s popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of social media data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a series of measures that we designed to support the quantitative and qualitative comparison of event detection techniques. In order to demonstrate the effectiveness of these measures, we apply them to state-of-the-art event detection techniques as well as baseline approaches using real-world Twitter streaming data.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32039/1/Weiler_0-300924.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen